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1. Introduction

One of the most important achievements in string theory is AdS/CFT correspondence [,
which states that the quantum gravity in Anti-de-Sitter(AdS) spacetime is dual to the
large N limit of the superconformal field theory at AdS boundary. It not only opens a new
window to study the quantum gravity from its dual field theory, but also supplies a new
tool to study the gauge theory from its gravity dual.

The best studied case in AdS/CFT correspondence is AdS5/SY My, where the bound-
ary field theory is an N = 4 super-Yang-Mills gauge theory. Many works have been devoted
to the study of the correspondence in this case. Among them, the study of the supersym-
metric Wilson loop operators [P, fl] is one of the most interesting issues. The Wilson loop
operators in gauge theory is defined to be the holonomy of the gauge field around a contour.
Their expectation values characterize the phase of the theory. From AdS/CFT dictionary,
the expectation values could be calculated by considering a fundamental string ending on
the boundary of AdS along the path specified by the Wilson loop operator. The area of
the string worldsheet bounded by the loop may give the expectation value of the Wilson
loop operator, after appropriate regularization. However, this is not the whole story. In
the field theory side, it has been found that the calculation of the expectation value of



1/2-BPS circular Wilson loop in SY My could be reduced to a corresponding calculation in
a zero-dimensional matrix model [[f]. There are two remarkable things. One is that though
the expectation value of the straight half-BPS Wilson line is exactly one, the one of the
circular loop is more involved, being a function of the ’t Hooft coupling. The circular loop is
related to the straight line by conformal transformation. The difference of the expectation
values of two cases comes from the conformal anomaly of the boundary. The other remark-
able point is that the calculation through the matrix model gives the expectation value not
only to all orders of ’t Hooft coupling A = g2,,;N but also to all orders of 1/N [f], which
is just the string coupling g from the correspondence. This indicates that the calculation
in gravity side should go beyond the free string limit.

Inspired by the field theory result, it has been found that the all-genus expectation
value of the 1/2 BPS Wilson loop operators is better described by the dynamics of the
D3-brane [fi] or D5-brane [ff], not just by the minimal surface of the string world-sheet [J],
especially when the charges of the string are large. Simply speaking, for the Wilson loop
in the symmetric representation or the multiply wound Wilson loop, the many coincident
fundamental strings could interact themselves and be described in terms of the dynamics
of D3-branes with electric flux [§. This is reminiscent of the giant gravitons [§—[I{]. For
the Wilson loops in anti-symmetric representation, the interaction of the strings leads to
a better description in terms of the dynamics of the D5-brane with electric flux [[f]. One
may also understand the above picture from Myers effect [[L1]: the string worldsheet in
the five-form field strength background may blow up in the transverse directions to form
dielectric brane [[[Z]. The generalization to the Wilson-"t Hooft operators could be found
in 3.

Motivated by the success in the Wilson loop case, we are led to consider its cousin in
6-dimensional field theory. In this case, we have AdS7/CFTg correspondence [[[4], where
the C'FTj is a six-dimensional superconformal field theory. This duality originate from the
the description of Mb5-brane in 11-dimensional M-theory. The near horizon limit of Mb5-
brane gravity solution in 11-dimensional supergravity is AdS7 x S4. And the low energy
effective field theory of coincident M5-brane is a (2, 0)-superconformal field theory [[[5, [[§].
This field theory is quite mysterious [[[7: its field content is of a tensor multiplet, including
a 2-form B, four fermions and five scalars; the field strength of 2-form is (anti)self-dual.
The existence of the 2-form gauge field implies that there exist string like excitations in the
theory. However, there is no lagrangian formulation of the chiral 2-form, even though the
chiral theory is still a local interacting field theory [[[§]. The theory has been suggested to
be described by DLCQ matrix theory [I9]. In any sense, it has not been well understood.
The AdS/CFT correspondence supplies a new tool to probe this nontrivial six-dimensional
field theory. The weak version of the correspondence says that the large N limit of the
(2,0) field theory is dual to 11D supergravity on AdS; x S* [[[. Some properties of the
field theory has been studied from its dual gravity, including the correlation functions of
the chiral primary operators and the Wilson surface operators [@, 0]. The Wilson surface
operators in (2,0) theory could be formally defined as [R1]]

Wo(X) :expz'/EB+, (1.1)



where ¥ is a two-dimensional surface. From AdS/CFT correspondence, its expectation
value could be calculated from the membrane action as

<Wo(B) >=e5 (1.2)

where S is the action of the membrane whose worldvolume boundary is . The action is
divergent and needs renormalization. Unlike its cousin the Wilson loop, the surface oper-
ator has conformal anomaly since even dimensional submanifold observable is conformally
anomalous [2J]. For example, the membrane action corresponding to the spherical Wilson
surface has both quadratic and logarithmic divergences. The existence of logarithmic di-
vergence indicates that the expectation value of Wilson surface may not be well-defined.
Unlike the Wilson loop operator, only abelian Wilson surface operator has been discussed
in the literature. The field theory study could be found in [23]: the conformal anomaly of
abelian Wilson surface operator was calculated in A; field theory. It is very hard to consider
the nonabelin Wilson surface in the field theory. In [R0], from AdS/CFT correspondence,
the Wilson surface operators in the fundamental representation has been studied. It would
be interesting to see if we can find the M5-brane description of the Wilson surface in higher
dimensional representation, just like the case in the Wilson loop. Especially, we want to
consider the 1/2-BPS Wilson surface operators. We will show in this paper that this is
feasible.

We must be cautious in talking about the BPS Wilson surface in higher dimensional
representation, since we have no idea on how to define it rigorously in the field theory.
Formally we can define the Wilson surface in representation R to be

Wa(S) = TrnPlexpi [ (B4 +---)), (1.3)
b
where - - - denotes the possible scalar fields and fermions so that we have a 1/2-BPS Wilson

surface operators. Without a lagrangian formulation of the chiral 2-form field theory, it is
not clear how to find the half-supersymmetric operators and what the expectation value
of Wgr(o) really means. It could be better to understand the situation from brane picture.
The surface ¥ could be taken as the intersection of membrane with the M5-branes. In
brane configuration, a Wilson surface operator in the rank k symmetric representation,
corresponds to a k-wound membrane ending on X,! while a Wilson surface operator in the
rank m antisymmetric representation corresponds to m membranes ending on Mb-branes.
These are the two most simplest cases, which we will study in this paper. For more general
representation, one may get the brane picture from the lesson in the Wilson loop case [24].

From AdS7/CFTg correspondence, the expecation value of the Wilson surface could
be calculated by the regularized volume of the membrane ending on the Mb-brane with
boundary .. For the multi-wrapped Wilson surface, the interaction among membranes may
induce a blow-up of the membrane to M5-brane wrapping S2. The dynamics of M5-brane
with self-dual field strength encodes the information of the Wilson surface. Analogue to

!Strictly speaking, there could be a small difference between symmetric representation and multi-wound
surfaces. In the Wilson loop case, this issue has been addressed in @]



the Wilson line case, the expectation value of the Wilson surfaces could still be calculated
from ([.g) but now the action is the M5-brane action with appropriate boundary terms.
However, unlike the Dp-brane, the M5-brane dynamics is much more involved. From the
Mb5-brane point of view, the membranes are the self-dual string soliton. The first step
in our investigation is to find the self-dual string soliton solution of Mb5-brane, whose
worldvolume is embedded in AdS; x S* background. In a curved spacetime, the equations
of motion of M5-brane looks forbidding and hard to solve. There is no careful discussion
on this issue. Most of the discussion on Mb-brane string soliton have been focused on
the flat spacetime. We will start from the covariant equations of motion and construct
the Mb-brane soliton solutions corresponding to the higher-dimensional Wilson surfaces.

The similar brane configurations has been discussed in [2¢] in Pasti-Sorokin-Tonin(PST)
formalism. Our results are in agreement with the ones in [R4].

This investigation is rewarding. It may help us to understand better the dynamics of
the Mb-brane, give prediction on the expectation value of multi-wrapped Wilson surface,
which has not been worked out in six-dimensional (2,0) theory. It could also shed light on
the membrane interaction and the possible Myers effect in M-theory.

The paper is organized as follows. In the next section, we give a brief review of the M5-
brane equations of motions. In section 3, we work out M5-brane string soliton solutions,
whose worldvolume is embedded into AdS; and is of topology AdS3 x S2. We consider
both the straight Wilson surface and the spherical Wilson surface. These soliton solutions
describes the Wilson surface operator in the symmetric representation. In section 4, we
study another kind of string soliton solutions with the same topology but with S3 part in
S%. They describe the straight and spherical Wilson surface operators in the antisymmetric
representation. For both kinds of solutions, we discuss their properties, including charges,
bulk actions, boundary terms. In section 5, we show that our solutions are half-BPS.
This suggests that the corresponding Wilson surface operators are also 1/2-BPS in the
field theory. We end with the conclusion and discussions. In appendix, we list various
connections used in our calculation.

2. The Mb5-brane equations of motion and actions

In this section, we give a brief review of the M5-brane covariant equations of motions in
curved spacetime. For a review on various aspects of M5-brane, see 7).

The M5-brane covariant equations of motion in eleven dimension was first proposed
in [P§] in superembedding formalism [Rg], and was then rederived by requiring x-symmetry
of an open M2-brane ending on the M5-brane [B(]. For other derivations from various
actions, please see [BI, BJ. We only care about the bosonic components of the equations,

which include the scalar equation and tensor equation. The scalar equation takes the form

Q 1 1
Gmnvm&% = ﬁEml me aHgml'“mG + WHQm1m2m3Hm4m5mG PQQ (21)

and the tensor equation is of the form

G™N yyHppg = Q7HAY — 2(mY + Ym) +mYm),,. (2.2)



Here our notation is as follows: indices from the beginning(middle) of the alphabet refer
to frame(coordinate) indices, and the underlined indices refer to target space ones.

Let us spend some time to explain the quantities in the above equation. There exists a
self-dual 3-form field strength h,y,,;, on the M5-brane worldvolume. From it, we can define

k" = hypgh™, (2.3)
Q=1- ;Trk:Q, (2.4)
my = 6,7 — 2k, (2.5)
Hypp = 4Q (1 + 2k),%hgnp (2.6)

Note that l,yy, is self-dual with respect to worldvolume metric but not H,,,,. The induced

metric is simply

Imn = 57%57%77@ (27)
where
&L = mszQm. (2.8)

Here 2™ is the target spacetime coordinate, which is a function of worldvolume coordinate
¢ through embedding, and Ej;, is the component of target space vielbein. From the induced
metric, we can define another tensor

2
Gmn = (1 + §k2>gm" — 4k™", (2.9)

We also have
ng = 5& - Eéngmg. (2.10)

Note that in the scalar equation of motion, the covariant derivative V,,Ex involves not
only the Levi-Civita connection of the M5-brane worldvolume but also the spin connections
of the target spacetime geometry. More precisely one has

b c
Vs = 0mEs —Th,E5+ ExEnwy, (2.11)
where '}, is the Christoffel symbol with respect to the induced worldvolume metric and
c . . . .
Wy 18 the spin connection of the background spacetime.

Moreover, there is a 4-form field strength H, and its Hodge dual 7-form field

strength H,

17"

1t
Hy = dCy
1
H; = dCgs + §C3 AN Hy (212)

The frame indices on Hy and Hy in the above equations (R.1]), (B.9) have been converted
to worldvolume indices with factors of £x,. From them, we can define

Yiun = [4* H —2(mx H + xHm) + mx Hm]mn, (2.13)



where

1
K = e € H s (214)
The field H,yyy is defined by

Hs = dA; — Cj, (2.15)

where Ay is a 2-form gauge potential and C'5 is the pull-back of the bulk gauge potential.
From its definition, Hg satisfies the Bianchi identity

dHs = —H, (2.16)

where H, is the pull-back of the target space 4-form flux. Note that different from the
3-form field hg which is self-dual on the worldvolume of M5-brane, Hg satisfies a nonlinear
self-duality condition:

*Hpnp = QLG H g (2.17)

This condition could be rewritten in the following form

oK
Hy = — 2.18
where
1 1 1

K=24/1+-—-H?+ —(H?)?2 - —H, HbH, Hele, 2.19
\/ Tt g ) — g Hae del (2.19)

It would be nice to derive the above equations of motion from an action. However,
compared to the Dp-brane action, which is just a Dirac-Born-Infeld(DBI)-type action, M5-
brane action is much more subtle since it describe a self-interacting chiral 2-form whose
field strength is self-dual. In [B3, B4], a manifestly supercovariant and kappa-invariant
action has been constructed. It contains an auxiliary scalar, from which the self-duality
condition could be derived as an equation of motion. The covariant bosonic action is of a
DBI-like form?

S.=Ts / dbx <\/ — det(gmn + iHpn) — —V;*qﬁfm"Hmn> — T / Zs (2.20)

where
1

and T3 is the tension of the Mb5-brane:

1

Ty = @ (2.22)

Here Zg is the Wess-Zumino term, in which Cg and C5 are the pull-back of the target space

gauge potential. In the action, one has

H™ = (xH)™"Py,, (2.23)
Hypn = mnpvpa (224)

2For an equivalent formulation with the same philosophy, see [@]



by introducing an auxiliary field b whose normalized derivative is

Opb
L a— 2.25
T =m0, 50nb (2:25)
Note that the vector v is timelike, v,v”? = —1 and one has the freedom in choosing wv,,.

The equation of motion of the auxiliary field b is not independent. It is a consequence of
the equation of motion of the 2-form gauge potential, which takes the following form after
appropriate gauge fixing:

Hyn = Vin, (2.26)

where

2 04/ —det(gmn + Zﬁmn
Vo = — \/ (~ ). (2.27)
,/_g 6Hmn

The relation (R.24) is actually a generalized self-dual condition.

This proposal has some troubles in defining a proper partition function, since the
topological class of auxiliary scalar would break some symmetries of M-theory, as pointed
out in [L§]. The resolution of this problem is to embed the chiral theory into a non-chiral
one. In [BI], a nonchiral M5-brane action for unconstrained 2-form gauge potential has
been constructed. In this action, one has to impose a non-linear self-duality condition to
ensure kappa-symmetry. And the equation of motion for 2-form potential is equivalent to
the Bianchi identity. The action is given by

1
SZSM5—SWZ:T5/<§*K:—Z6> (2.28)

There are two remarkable relation on K, when the nonlinear self-duality condition (P.1§)
holds:

1
K =2K = 2\/1 + o ™ Hinp,
K=2Q'-1. (2.29)

It has been proved in [BJ] that the two different actions (2.20) and (2.2§) are equivalent,

leading to the same set of equations of motion.

3. Mb5-brane description of the Wilson surface in the symmetric represen-
tation

The AdS7 x S* spacetime could be taken as the near horizon geometry of M5-brane gravity

solution. It is also the maximally supersymmetric solution in 11-dimensional supergravity,

whose equations of motion take the form,
1

Ryn = H H L@
MN 2 % 3l MPQRIL

0= 8M\/—gHMNPQ +

5% 4|gMNHPQRSHPQRSa (3.1)

WGMI"'MSNPQHMI"'M4HM5"'M8 (32)



where the indices take values from 0 to 10. The metric and background 4-form flux of

AdS7 x S* are

d2—R2d2 dt? + dz? + dr? + r2dQ32 R2d92
57 = —(dy" —dt® +dz” +dr* +r 3)4‘74
3R3 .. 3 .92 .
H, = =3 sin® (1 sin” (o sin (3d(y A dCa A dC3 A d(y (3.3)

where d©% is the metric of 3 and d)j is the metric of S*. The 4-form field strength fills
in S$%, in which ¢;,7 = 1,2, 3 are three angular coordinates in S*. Note that the radius of
AdS7 is twice the one of S*. Here since our discussion following will focus on the AdS7 in
this section, we rescale its radius to be R. From the AdS;/CFTg duality, we know that

R = (87N)3l,, (3.4)
where [, is the Planck constant in eleven dimensions.

3.1 Straight Wilson surface

The standard description of the Wilson surface in AdS/CFT correspondence is the bound-
ary of a minimal area membrane worldvolume in AdS; x S* background. For the straight
Wilson surface, we can set the membrane worldvolume to be extended in the directions
y,t,x and fixed at r = 0. From the AdS/CFT dictionary, the expectation value of the
Wilson surface operator depends on the volume of the membrane through ([L3). In the
straight Wilson surface case, the volume with respect to the induced metric is

3
Vo = /R—3dydtdx
Yy

R3
=TX_—, (3.5)
2y0
where T', X is the lengths of the t,z directions. Here we have introduced a cutoff yg to

regularize the volume. The action is just

N_ 1
S=TVo==TX, (3.6)
T yO

where Th = W is the membrane tension. The action is proportional to the area of the
P

surface and is also of quadratic divergence.

To have a M5-brane description of the Wilson surface in the high rank representation,
we have to find the appropriate M5-brane solution first. Inspired by the study of the Wilson
loop, one may attempt to try a Mb-brane with worldvolume AdSz x S3 [BEl. The induced
membrane worldvolume is an AdSs and the blow-up of the background flux gives an S3.
In the case of the straight Wilson surface, let the worldvolume coordinates of M5-brane be
&,1=0,...5 and the embedding be

50 :t7 51:.7;7 62:707 y:f(T'%
532045 54265 55:7



where «, 3,7 are the angular coordinates of S3. The induced metric is then

R2 ,
dsig = F(—dfg +d€} + (14 f£2)d&5 + rdQ3)
R2 , R2T2
- F(_dtQ +da® + (1+f 2)d7’2) + ?(doz2 + sin? adB? + sin? o sin’ ﬂde)
(3.9)

where the prime denotes the derivative with respect to r. Without causing confusion, we
simply let ¢, z,7, «, B,y be the coordinates of the M5-brane worldvolume.
There is a self-dual 3-form field strength in the M5-brane worldvolume. Let us assume
it to be
a
hs = 5(1 +xipq) Vdet Gda A dB A dry (3.10)

where a could be a function of r and det G is the determinant of the metric of S®. In our
case, we have

3
hs = a (?) (r3sin? acsin Bda A dB A dry + /1 + f2dt A dx A dr). (3.11)

Then we can calculate the relevant quantities k™", G™" etc. Here we list the quantities
which will be useful to our following discussion:

k= Kk ™" = ga‘*,

w [ -%I3 0
km - 2 )
0 %13

GV = <+>2(1 —a®)? (3.12)

Rrsinasin 8

where I3 is a rank 3 identity matrix, and

3 7
() (LT &

7 dt ANdx N dr +

1+ a? 1—a?
The non-chiral five-brane action is just

6 4
1
S =Ts /dtdmdrdadﬁd’y(?) 73 sin? asinﬁ(x/ 1+ f2 + a4 - 1> (3.14)

1—a

sin? asin Bdo A df A dw) (3.13)




Since there is no pull-back of bulk 4-form field strength on the M5-brane worldvolume,

we have dH3g = 0, which gives the constraint

a ’I“3

TP constant (3.15)

The equation of motion on the tensor Hy,,,, in this case, is
GV Hppg = 0. (3.16)

Here V,, is the covariant derivative with respect to the induced metric. We list the detailed
Levi-Civita connection in appendix. It is straightforward to check that the above equation
is satisfied, provided that a is a constant. Then from dH = 0, we can determine

f(r) = kr, (3.17)

where k is just a constant. This is reminiscent of the solution in the straight Wilson line
case [fl, [J) in AdS5 x S° and the spiky solution in flat spacetime [B7, BJ]. Then the induced
metric of M5-brane is
R? R?
ds* = W(_dtQ +dz? + (1 + k?)dr?) + ?(doz2 + sin? ad? + sin”® asin? Bdy?). (3.18)
This indicates that the worldvolume of M5 brane is actually AdSs x S3, with radius RIT\/W
in AdSs3 and radius % in S3. The self-dual 3-form field strength is then

3 V1 2
hs = gR—3<sin2asinﬁda/\dﬁ/\d’y+ #dt/\dw /\dr) (3.19)
K r
and
R’ 1 .2 . V1 + K2
H; = 2a? (m sin® acsin fda A d N dy + mdt Adx N\ dr) (3.20)

For the scalar equation of motion, it is more involved. In our case, we have

=l gt g g
Rr r Rr Rr

gh 57 &5 _ Rsina’ g6 _ Rsimozsinﬂ7 (3.21)
K p K K K

where we have set the veilbein of AdS; part of the target spacetime as

n R - R - R R

0 = =dt, 0'=Z=dy, 0*==dz, 6°==dr,
Yy Yy Yy Yy

g &da, 5 _ Rrsmadﬂ’ 46 _ Rrsmasmﬂd% (3.22)
Yy Yy Yy

The corresponding spin connection could be found in appendix.
The scalar equation of motion involves

V&S = 0, EE — TP ES 4 £2£bu° (3.23)

P n~ab

,10,



where '}, is the Christoffel symbol and wib is the spin connection of the background

spacetime. The calculation shows that
G""'Vp&r =0, except ¢ =1 or 3. (3.24)

The nontrivial components come from ¢ = 1 or 3. The right hand side of the scalar equation

of motion consists of the matrix Py = dz — Eé”&f, which has nonvanishing components

1 K
Pa0:< L2 15;“2). (3.25)

T 1+k2 1+4k2

where a, ¢ take values 1, 3.
For the background flux, we have a dual 7-form field strength in AdS; part,

Hopp..6 = % (3.26)
Note that our convention is a little different from the literature by a factor 2 since we have
rescaled the radius of AdS7.

On the right hand side of the scalar equation, only 7-form field strength contributes
since the M5-brane worldvolume is embedded simply into AdS7 and there is no induced
4-form field strength on it.

It turns out that the nontrivial components ¢ = 1 and 3 of the scalar equation of
motion give the same constraint:

(1+a)? 212 1-ad
—— 4+ (1—-0a") = -2———. 3.27
1+ K2 ( ) V14 K2 ( )
This equation could be solved and gives the relation
+
a=——=r (3.28)

V14+kZ2 -1

In short, we have obtained a string soliton solution of M5-brane, once the relation (B.2§)
is satisfied. We will show in section 5 that our solution is indeed half-BPS. This solution
matches with the one found in section 2.3 in [Pg].

Let us consider some properties of this string soliton solution. One can calculate the
charges of this string soliton. Since our solution could be taken as M2-branes ending on M5-

brane, with M2-brane worldvolume extending along ¢, z, r, the charges could be calculated

by
1
Qe = Vol(59) /SS *H (3.29)
1
Qum = Vol(59) /SSH (3.30)

where S is the transverse S3 and * here means the Hodge dual with respect to the metric
of the M5-brane worldvolume without the string soliton. Here is a subtlety. If we take the

— 11 —



strategy suggested in [R9 and think that the metric of the 5-brane worldvolume without
string soliton is just
R2

1272

2
ds? = (—dt2 +dx? + dr2) + R—Q(da2 + sin? adB? + sin? o sin? ﬂva) (3.31)
K

which indicates that the worldvolume is a AdSs x S with the same radius, then our solution
has opposite electric and magnetic charge:

R3

Qp = +—— (3.32)
ZSHZQ
R3

Qum = 3.2 (3.33)
P

However, the above treatment could be problematic. When we turn off the charge, the
3 part shrinks also so we have no M5-brane worldvolume anymore. This means that the
solution is not the same self-dual string soliton on M5-brane as the one discussed in [R9]. Tt
is more like the case in [[f], where a D3-brane is blown up by the Wilson line. Analogously,
it would be better to calculate the charge from the action itself. For the magnetic charge,
the above result is fine. But for the electric charge, it could be better to start from the
conjugate momentum of the 2-form gauge potential, which is defined to be
oL

I = 25(8tAx7"). (3.34)
In the Wilson loop case, the conjugate momentum to the gauge potential gives the charge
of Fl-strings. We expect that the conjugate momentum of the 2-form gauge potential gives
the electric charge of membranes. Let us first start from the non-chiral action. Using the
nonlinear self-duality relation (P.1§), we have

I = «H, (3.35)

where * is respect to the induced metric of M5-brane. So, in this sense, the electric charge

R3V1 + K2

3.2 J
lp/<;

of the Wilson surface is

Qe == (3.36)

which is different from the magnetic charge.
However, if we start from the covariant action (R.20), then the conjugate momentum
is not so simple, it is

T = AnCA—— (3.37)
\/— det(gmn + 1Hmn)

which in this case gives

Qp =~ (1 + ﬁ)% (3.38)

- 12 —



Therefore, we have shown that the conjugate momentum of the gauge potential de-
pends on the choice of the action. We are not certain which one we should use. Fortunately,
the magnetic charge is always well-defined. It characterize the winding number of mem-
branes ending on the M5-brane. We will use it in our following discussion.

It is remarkable that the sign in (B.2§) has physical implication. From the discussion
on the charge, we know that Qs is proportional to —a. So the minus sign in (B.2§)
means that we have membranes ending on the Mb5-brane, while the plus sign in (B.2§)
indicates anti-membranes on M5-brane. We will see that both cases the soliton solution is
half-supersymmetric.

It is also interesting to consider the bulk action in different formalism. From the
nonchiral action (R.2§), the action of M5 brane in this case is

3 3 2
S = T5/dtdxdrdadﬁd’y<£> <§> sin2asinﬁ<ﬁ—>.
KT K 2

The integral over 7 in the action shows that it is quadratically divergent and is pro-
portional to the area of the Wilson surface:
_ NQu|

1
S = TX— 3.39
i TX (3:39)

where T" and X indicates the integral over ¢t and x, and yg is a cut-off. Compared with
the result from the membrane calculation (B.f) , we find that basically they differs by
a @ factor. This fact indicates that for a Wilson surface operator in the symmetric
representation its expectation value is @) p; times the one of the fundamental representation.
Recall that Qs is the charge of the membrane and should be identified with the rank of the
representation. This is very similar to the Wilson line case. However, there is a difference
besides Qs in the prefactor. It could be absorbed in the cutoff. Or it indicates that these
quadratic divergence should be cancelled by appropriate counter terms, considering the
BPS nature of the configuration which will be shown in section 5.

Unlike the infinite straight Wilson line case, the action of Mb5-brane is not vanishing,
but is proportional to the charge. This is not strange since our soliton solution is a self-dual
one, with both electric and magnetic charge. Even in the BPS Wilson-t’ Hooft line case,
the action of D3-brane is not vanishing if not taking into account of the boundary term [[L3].
Our case here is very similar. The BPS nature of our solution suggests that if we take into
account of the boundary term, the action could be vanishing. However the boundary terms
in our case seems to be tricky. One may naively work out the conjugate momenta of y and
A,r. For the 2-form gauge potential, its conjugate momentum has been given as above,
and actually the contribution from IT**" Hy,, exactly cancel the bulk action. This seems
indicate that one should only consider the boundary terms from conjugate momentum of
gauge potential. From the following discussions on other cases, we will see that the issue
is not so simple.

One could also study the action from its covariant form (R.20). Since the action involves

an auxiliary field, it needs some efforts to carry it out. To simplify the calculation, one can
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choose the vector ¥ to have nonvanishing components v; and v,. With this choice, one can

check that the generalized self-dual condition (R.1§) is satisfied and

\/— det(gmn + iHypp) = \/(—g) (1 + %TrEﬂ). (3.40)

The straightforward calculation shows that the action of the solution is identical to the one
from nonchiral action. However, one should note that since the conjugate momentum of
the gauge potential from covariant action is different from the one from nonchiral action,
the boundary term gives the different contribution. It is not clear which action one should
use to discuss the boundary terms. It turns out for the soliton solutions studied in this
paper, the two bulk actions are the same. For the boundary terms, we will just focus on
the ones from the nonchiral action.

Note that for this solution, we can take Mb-brane as the blow-up of M2-brane. This is
reminiscent of the D3-brane description of the Wilson line studied in [fj]. In the Wilson line
case, if the Wilson operator belongs to the symmetric representation, its brane description
is D3-brane, which has the worldvolume AdS, x S? embedded in AdSs. While if the Wilson
operator belongs to the antisymmetric representation, its brane description is a D5-brane,
which has the worldvolume AdSy x S* with AdSs in AdS5 and S* in S° [[f. In our case,
we have a Mb5-brane description of the infinite straight Wilson surface. Since this Mb5-
brane worldvolume is completely embedded in AdS7, analogue to the Wilson line case, we
may take the Mb-brane solution discussed in this section correspond to the Wilson surface
operator in the “symmetric representation”. Intuitively, we can take the Wilson surface
in the “symmetric representation” as the multi-wound Wilson surface. Later on, we will
see that there is another M5-brane description of the Wilson surface in the “antisymmetric
representation”, where the M5-brane worldvolume is still a AdS3 x 53 but with S3 in S%.

3.2 Spherical Wilson surface

The spherical Wilson surface could be obtained from the straight Wilson surface through a
conformal transformation. The spherical Wilson surface in the fundamental representation
was firstly studied in [20] in the context of AdS/CFT correspondence. Unlike the straight
Wilson surface, whose membrane boundary is a two-plane, the boundary of membrane for
a spherical Wilson surface is a two-sphere. With the same philosophy, one can get the
action of the membrane [2(]

(3.41)

€ €

2
S =2N <%—21H%—1+0(6)>

where L is the radius of two-sphere. It has both the quadratic and logarithmic divergences.
In order to consider the M5-brane description of the spherical Wilson surface, it is
more convenient to work in the Euclidean signature as in [ and start with the following

metric of AdS7:

2
ds* = %(d@f +dr} + ri(da® + sin® adf?) + dr3 + r3(dy* + sin® yds?). (3.42)
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The Wilson surface will be placed at 71 = L and ro = 0. Let us change the coordinates
(r1,72,9) to (p,m,0) by the following relation:
Lcosn L sinh psin # Lsinn

= = == 3.43
" cosh p — sinh pcos 6’ "2 cosh p — sinh p cos 6 Y cosh p — sinh pcos 6’ (343)

then we have the AdS7 metric as

2

ds*= <d772 +cos? n(do® +sin® adf?) +dp? +sinh? p(dh? +sin? Od~* +sin? 0 sin® 7d52)>
(3.44)
Here, the coordinates take the range p € [0,00),0,a,v € [0,7), 3, € [0,27),n € [0,7/2).

To find the appropriate M5-brane that describes the blow-up of the Wilson surface,

sin®n

we may take (p,«, 3,0,7,6) as the worldvolume coordinates of M5-brane and assume that
7 be only the function of p. Equivalently, we can think 7 instead of p as the worldvolume
coordinate. Inspired by the solution in D3-brane of the Wilson line, we make the following
ansatz between 7 and p:

sinn = k! sinh p, (3.45)
then the induced metric is
R? 1+ K2
2 _ 2 2 2 | 2 2
ds® = S’y (1 R ndn + cos” n(da” + sin” adf3 )>
+R?K2(dO* + sin® dy? + sin? O sin? vd6?). (3.46)

We turn on the self-dual field strength on the M5-brane:

R\* | 142
hs :2@(1’( - > +Ff 5 cos%ysinadn/\da/\dﬁ+R3/<;3sin298in’yd0/\d’y/\d5>.
sinn 1+ Kk2sin“n

(3.47)
Notice that due to the Euclidean signature, there is a factor i in h,,g. Similarly we can

work out k™", k%, @) and open membrane metric G™". The field strength Hj is just

1 R\’ | 1+r2
Hs =2ali 5| = +K' 5 cos? nsin adn A da A df3
1+ a? \sinn 1+ k2sin®n

R3k3sin” O sinvdf A dy A d5> . (3.48)

+1—a2

With these setups, let us check if they satisfy the equation of motion. The components

of Levi-Civita connection of the metric (B.44) are listed in appendix. It is straightforward
but tedious to check that the tensor equation is satisfied. For the scalar equation, we have

1 R 5g:RCOS77 gé_Rcosnsina

& = , —, = -
T sinp’ ¢ sin p sin
R
5% = I cosn , 53 = kR, 536 = kRsin 0, 551 = kRsinfsiny. (3.49)

sinny/1 + k2sin®n
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Here the vielbein of the metric (B.44) are

oL _ 'R dn. 02 _ Rcosnd 43 _ RCO&jnsinadﬁ’ Ga _ R dp.
sinn sinn sinn sinn
45 Rs.inhpde’ g6 _ Rsmbpsin@d% 47— Rsinhp.sinﬂsinwdd (3.50)
sinn sinn sinn

From the scalar equation, we obtain one nontrivial relation coming from the cases when

c=1or4:
K _ 1— a2

Vitr2  l4a?

This is actually the same relation (B-2§) if we change x — .

(3.51)

The charges of the string is the same as the ones in the straight Wilson surface case,
once we take into account the difference of the parameter x in two cases.
The non-chiral action gives us

Sars =T / <K, (3.52)

where K = 1+Z4

The Wess-Zumino part of the action is more involved. The bulk 6-form gauge potential
is

6
Ce = <E> rir3 sin asinydry A da AdB A dry A dy A dS
Y

_ R6c03377sinh3ps1n Hsmasmfyd Ada AdBAdO A dy A d
sin®n

¢ cos? 77 sinh? psin® 6 sin asin y

dn ANda ANdB Ndp N\dy N dd
sin® 7(cosh p — sinh p cos 6) aNdGndpdy

Rﬁcos 7781nh3p51n 0 sin v sin y(sinh p — Cosﬂcosh,o)d77 Ado AdB A dO A dy A do
sin® 7)(cosh p — sinh p cos 6)

(3.53)
The total bulk action of M5-brane turns out to be
2 1
S = T5(87T3R6)<K—> (—2 —|—1n770>
4 U
N
= Q| ( + In 770> (3.54)
2m ne

where 1g is a cutoff near 0. It is remarkable that from the form of the Wess-Zumino action
there could be quartic divergence. However it turns out to be vanishing in the end. So
the bulk action is actually of both quadratic and logarithmic divergences, with the similar
structure as (B.41). Now x2 = (87N)~'Qxs, which is very small in the large N limit. Here
we have made the conformal transformation so the radius of the sphere does not appear in
the above expression. To compare with the existing result in the literature, we can replace
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1/no with L/no in the above relation, where L is the radius of sphere. It is remarkable
that the bulk action is linear in the charge Qs of Wilson surface. This is consistent with
the result from the field theory calculation [R(]. The divergence above has two origins, one
is from the conformal anomaly which relates the straight Wilson surface to the spherical
one, the other is from the divergence in the original straight Wilson surface. Since the
boundary of Wilson surface is 1-dimensional, it will not induce any conformal anomaly.

One may wonder the boundary terms also contribute to the action. Especially one may
wonder if the contribution from gauge potential part could cancel the above divergence
exactly. Unfortunately it is not the case anymore. After taking into account of it, the
nonchiral action is still logarithmically divergent:

4
K
Sz + T Hyyy ~ - n7o- (3.55)

Since k2

is very small, the above contribution is next leading order result. In other words,
the leading order divergent term is actually cancelled by the boundary term.

It is remarkable that unlike the Wilson loop case, there is no finite contribution from
the integral directly, no matter if or not we take into account of the boundary terms.

Therefore we have a different story on Wilson surface from Wilson line. In the Wil-
son line case, the expectation of the straight Wilson line is vanishing and the one of the
circular Wilson line get the contribution from the conformal anomaly of the boundary. In
the Wilson surface case, the expectation values of both kinds of Wilson surfaces are not

vanishing.

4. Mb5-brane description of the Wilson surface in the antisymmetric rep-
resentation

In the study of the brane picture of the Wilson-loop, one knows that for the Wilson loop in
the anti-symmetric representation it should be described by D5-brane whose worldvolume
is of topology AdSs x S* with AdSs being in AdSs and S* in S® [[f]. In the case of the
Wilson surface, one may expect that there exit another M5-brane description. We will show
in this section this is true. We find that though this Mb5-brane is of the same topology
AdSs x 53, unlike the case we studied in the above sections, the S® part is embedded in
S,

4.1 Straight Wilson surface

Let the worldvolume coordinates of M5-branes be &;, ¢ = 0,...5 and the embedding be

o=t L=z &=y,
=0, =G, =0, = (4.1)

where ¢; are the angular coordinates of S*. Here we let (; be fixed at a constant (. The
induced metric is
R?sin? ¢V

(A6 4 sin” Gud( + sin® Gy sin® yd(f). (4.2)

2
dsind = %(—dtz +da® +dy?) +
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In this case, we take the self-dual 3-form field strength on the M5-brane worldvolume
to be
sin® ¢0
8

1
hg = 2aR? (y—gdt ANdx Ndy + sin? (o sin (3dCo A dCs A dC4> (4.3)

Similar to the above cases, we can get k™", k? = %a4 and Q = 1 — a*. The open
membrane metric G"™" take the diagonal form:

2
Gtt — G — _QYY — (1 +a2)2<%> ’

2)2 4 33 _ G22 G44 _ G22 (44)

G2 =(1-ad*)2———
( R2?sin? (0’ sin? ¢y’ sin? (g sin? (3

where G¥ denotes G%%. And the physical 3-form is

sin® ¢0

dt Ade N dy + — S
g N AT AT R )

(1+a?)y

satisfying dHs = 0.

Hjy = 2aR3< sin? Co sin (3dCa A dls A d<4>, (4.5)

It is straightforward to check if it is possible and under what condition if possible that
the above ansatz satisfy the equations of motion. The tensor equation holds under the
above setup. For the scalar equation, the AdSs part is trivially satisfied. For the S3 part,
we have

Rsin ¢Y

53 N Rsin CO sin CQ
2 )

cb _ Rsin ¢V sin (o sin (3
I 9 ’

G 9 )

£2 = (4.6)

where we set the vielbein of S* part to be

Hl = gd(l, éz = g sin CldCQ, é§ = g sin Cl sin CQng, éé = g sin Cl sin CQ sin <3d<4
(4.7)

We list the relevant Christoffel symbol with respect to (.J) and the spin connection with
respect to (f.7) in appendix.

The nontrivial relation for the scalar equation comes from ¢ = 1. Here the left hand
side of the equation is not vanishing due to the nonvanishing contribution from the spin
connection. And on the right hand side, since Hj34 = }%, it gives nonvanishing contribu-

tion. This leads to a relation

in 0
9 ,asing
l1—-a®=-2 cos (0 (4.8)
or .
+1 + si
g T1tsing (4.9)

cos (0
Therefore, we have obtained another M5-brane soliton solution once ([.9)) is satisfied. This

solution is the same one in section 2.2 in [R§], discussed in PST formalism.
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Let us calculate the charges of the Wilson surface. The magnetic charge is easy to
obtain:
R3sin? (% cos ¢¥
3
85

Qm = — (4.10)

For the electric charge, it is much subtler. One may define it from (B.29), which gives you

R3sin® (% cos ¢°
813

Qe = (4.11)

On the other hand, one can define the electric charge from the conjugate momentum. In
this case, the conjugate momentum not only get contribution from the non-chiral action,
but also from the Wess-Zumino part. And in the Wess-Zumino part of the action, there
exist an ambiguity in defining the 3-form gauge potential. We make the following choice

1
Cs = _§R3< —cos ¢ + 3 cos® C0> sin? Co sin C3.dCa A dCs A déy (4.12)

Then the electric charge is

3

Qr=-y
1603

cos Co(sin?’ ¢% 4+ 3 — cos? CO). (4.13)

Similar to the case in section 3, the sign in ([.9) is physical. The situation here is a
little subtler. No matter which sign we take, we always get the same formulae on magnetic
and electric charges. In other words, what kind of membrane the Mb5-brane feels depends
on cos (¥ rather than the sign in (J£J). Nevertheless, we will show that the different choice
of sign indicates the different supersymmetries the soliton solution keeps.

Note that once we turn off the 3-form field on M5-brane, there still exists an M5-brane
solution, which reside at ¢° = 7/2. This means that the M5-brane without flux could be
embedded in the background without instability.

The bulk action is

S:T5/(*K—2Q3/\H3)

T: 1
= 24n?ROTX —
8 2yg
N2 1
= —TX—, (4.14)
2m Y5

which is quadratically divergent, and similar to (@) Now since Qp; ~ N, the action is
still proportional to NQps. Similarly, if we try to take the contribution from boundary
terms coming from the conjugate momentum of gauge potential into account, we have

. 1
S ~ sin? CO—Q. (4.15)
Yo
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4.2 Spherical Wilson surface

For the spherical Wilson surface, we have to do a conformal transformation of the above
one. The embedding of S3 in $% is the same as before. For the AdSs part, it is somehow
different. The metric of Euclideanized AdS7 take the form (B.49). Let us assume that the
spherical Wilson surface satisfy r? + ¢ = L2, namely a sphere S? with radius L, and later
on we will check such kind of embedding satisfies the equations of motion. Let

y = Lcosd, r; = Lsind, (4.16)
then the AdSs part of the induced metric of M5-brane is

R2
2 _
dsind T cos2d

(d6? + sin? §(da? + sin® adB?)) (4.17)
The self-dual 3-form field strength on the M5-brane worldvolume could be set to

sin?dsin o sin® ¢ 0

h3:2aR3<2 ds Ado A dS +

- sin? ¢y sin C3dCa A dis A dg) . (4.18)
cos3 §

From it, we can calculate the other quantities as before. The only differences from the
straight case are

) 2 G&S G&S
G¥ = (1+a2?(222) | Goo= CE S 4.19
(1+a7) R ’ sin?§’ sin? § sin® o ( )
The physical 3-form field strength is now
1 sin?dsina 1 sin3¢?
o 3/( . .2 .
H3 =2aR <11 Ry dd Nda A\dp + 1—a2 g o (o sin (3dCo A d(3 A dC4>.

(4.20)

For the scalar equation, the discussion on S3 part does not change and we find the
same relation as ([l.§). We needs to check if the Euclideanized AdS3 part does not give
anything nontrivial. This could be checked explicitly. Now we have

Rsind 4 Rsino

Rsiné 9
Er=_""" g2-R =" B 4.21
s cosd = O e cosd = B coso ( )
where we have set the relevant vierbeins to be
6L = Edy, 62 = Edrl, 63 = Erlda, 6% = Erl sin ad 3. (4.22)
Yy Yy Yy Y

Here we abuse the indices which we wish would not bring any confusion to the reader.
From the embedding, it is not obvious that V,,&m = 0. However the explicit calculation
shows that this is indeed true. The relevant Levi-Civita connection and the spin connection

are put into appendix.
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Unlike the case discussed in section 3, the conformal transformation from straight
surface to sphere is somehow trivial. Therefore the charges of the membrane on M5-brane

is the same as (f.10), ([.13). The bulk action reads

S = 271'3R6T5/2 sin” &
o cos3d

3 2 2
- T2 -n?)
€

2 €
2 2
N
=N <—2 —In —>, (4.23)

€ €

where € is the cutoff near § = 5. The terms in the bracket of (£.23) looks familiar. Actually,
in the above discussion we have chose the angular coordinates so that the radius of the
sphere does not show up. It is easily to recover it by replace 1/e with L/e. Then we have
the similar divergent terms as (B.41). The significant difference is that the M5-brane action
is proportional to the membrane charge Q) ;.

5. Supersymmetry analysis

Let us check if the above solutions are supersymmetric. Firstly we need to work out
the Killing spinor of the bulk background. From the discussions above, we notice that
all the solution has a global symmetry SO(2,2) x SO(4) x SO(4). In order to make the
analysis simpler, we first rewrite AdS7 x S* metric in form of AdSs x S3 x S3 fibred over
two-dimensional base space:

R? ~
ds®> = R? (cosh2 pdsids3 + sinh? de§ + dp2) + e (dCl2 +sin? ng) ) (5.1)
In the new fibred coordinates, the 4-form flux can be written as:
6
H, = E67 AeBAed Aell (5.2)

Here we use ds?4 S a3, dQ% to denote the metric of unit AdSs and two unit S3’s, respec-
tively. The eM’s, M = 0,...,10 are the vielbein of this metric.

We use T'™ to denote the 11-dimensional Gamma matrices. They can be written as
the following form [BY:

M =%es'0lelo, M=peselelaa,
MP=uereleolos, P=3uel1e6 010,
M=301e60l0m P=%u0106°0110,
M=yelelelel, I'=y2lelelel,

M eyw2l0leideo, M=wolol®d oo,

M =%w®leled®eos. (5.3)

Here (75,77, 13), (61,52,5%), (63,6%,6%), (6%,5°,59), (01,09, 03) are five sets of Pauli ma-

trices and 9 = i53.
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The first step is to find the Killing spinor in AdS; x §* with the above fibred coordi-
nates. In order to do so, we need to use the following Killing spinors of the unit AdS3; and
the two unit S3’s:

7

VXl = ia/ép)d,, (p=0,1,2,d =+1,1=1,2), (5.4)
. 1

Vpky = SVopXy, (p =345,V = +1,7 =1,2), (5.5)
Vx5 = %c’apng, (p=8,9,10,¢ = +1, K = 1,2), (5.6)

and decompose the 11-dimensional spinor £ as

5 = Z ea/b’c’IJKXé’ o2y )A(l{’ ® X§7 (57)
a'b'cdIJK

where each e,y 17K is a pair of 2-dimensional spinors with ~5, 77, 8,01, 09,03 acting on
it. In another word, each €,y ~7jK belongs to the tensor product of the space of the 2-
dimensional spinor and C2, and 7%,~7, 75 act on the space of the 2-dimensional spinor,
while o1, 09, 03 act on C2.

From the Killing spinor equation and the above decomposition, we obtain the following
supersymmetric conditions:

(d'oy + isinh py" — icosh py7o3)e = 0

(b oy + cosh py” — sinh py7o3)e = 0,

(o3 — cos (17° + sin 1y o3)e = 0

de 1 Oe i
T e, 22

ap 2% aG 2

I
|
2
Q
w
m

Now we begin to solve these equations. Using eq. (p.11]), we find that € can be written
as

1 1
€ = exp <§agp + 5780;»,(1) C. (5.12)

Here ( is a pair of constant spinors. Then eqgs. (5.§)-(F.10) lead to the following projective
conditions:

a,r770-2< = Ca b/r770-2< = _Ca 6,760-3< = C’ (513)

Since for each a/,V',c, I, J, K, eqy 17K is a pair of two dimensional spinors and o', b, ¢ =

+1,1,J, K = 1,2, totally there are 28 components. After imposing 3 projection conditions
each of which project out half of the components, we have 2° complex components. Finally
imposing Majorana condition leaves 2° real components.

Now let us introduce the Gamma matrix I'jys5, which is determined by the Mb5-brane
worldvolume and the flux on it [2§:

1
Pars = o /—gej1 P [Cjijo> + 400 < o> Pijajsg) - (5.14)
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Here g is the determinant of the induced worldvolume metric component, hj, ., is the
self-dual 3-form on the M5-brane. And I'j, ..., > is defined as

Cjigus =& & Tay g, s (5.15)

where I'y ..., is the product of the Gamma matrices in the frame.
The kappa symmetry projection condition is

Pamsé =¢. (5.16)

The amount of unbroken supersymmetry is determined by the solution of above equation.
For the straight Wilson surface case, the metric of the M5-brane and the self-dual
3-form flux on it can be written in the fibred coordinates as

ds® = R*(cosh? Pde?Ang + sinh? prdQ3), (5.17)
hs = g( Onel ne?+ e Aet Aed)
= gR?’ <cosh3 pr, cosh psinh pdr A dp A d + sinh?® py, sin? asin Sda A dB A d7>
(5.18)

From this, after some short calculations, one get

s = —(Lor5 + a(To12 — T'sas)) (5.19)

Using the above representation of I'#, one can find that the condition (f.16) is equiv-
alent to

—03 €+ ayg01 €+ iaysog € = €. (5.20)

When ¢; = 0, we have ¢ = eXp(%ngk)C , then the above equation is equivalent to
—03C — (4 ae” Pkrgo1( + iae” Prygoa( = 0. (5.21)

From this, we can obtain the following supersymmetry condition for a, p; and ¢:
a==xet,  +g01( =C. (5.22)

The projection conditions on ¢ here are compatible with the projection conditions in
egs. (B.13) for the Killing spinors. So the supersymmetry conditions are satisfied by half
of the components of the Killing spinors. In another word, our solution is half-BPS. In the

case of (1 = w, we can similarly obtain the following supersymmetry conditions:
a=+efr  Fgo1(=C. (5.23)

Let us set sinh p;, = 1 to recover the induced metric (B.1§) from fibred metric (5.1).
Then the relation (B.2§) is exactly the relation a = £e”*. This shows that our M5-brane
soliton solution corresponding to the straight Wilson surface is half-BPS. For the spherical
solution, we get the same conclusion.
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For the case of 53, we can similarly obtain,
s = —(Tot2s9(10) + a(lo12 — Isg(10)))- (5.24)
Using eq. (5.9), we find that the relation (5.16) is equivalent to
09 € + ayg01 € + laygoz € = € (5.25)

for the straight Wilson surface. Now, we have p = 0, then ¢ = exp(%ygaggo)g, we can find
that the above equation is equivalent to

0 0 0 0
(cos % + asin %)O‘QC + (a cos % — sin %)78@(
0 0 0 0
—(cos%—i—asin%)(—i(sin%—acos%)’ygagg“:O (5.26)

This gives us the following supersymmetry conditions on a, (? and ¢,

+1 + sin ¢°
a=———=

. CO 5 + ’)/80'1C = C (527)

The first relation is exactly ([.9). As in the previous case, the projection condition here are
also compatible with the projection conditions eqgs. (5.13). Then we have shown that our
solution in this case is half-BPS as well. The discussion on the spherical Wilson surface is
similar.

From the above discussion, we come to the conclusion that all our solutions are half-
BPS.

6. Conclusion and discussion

In this paper, we investigated the M5-brane soliton solutions in AdS; x S* background.
Starting from the covariant equations of motion of M5-brane, we found two classes of solu-
tions, both having AdSs x S? topology. The AdSs part is always in AdS7 but S® could be in
AdS7 or S*. The two different configurations give the description of the Wilson surface op-
erators in the symmetric and the anti-symmetric representation respectively. We discussed
the properties of these solutions and their implications to the Wilson surface operators
from AdS/CFT correspondence. Unfortunately due to the shortage of the discussion on
the Wilson surface operators in six-dimensional (2,0)-theory side, we were not able to make
comparison more precisely.

From the dictionary of AdS/CFT correspondence, the exponential of bulk M5-brane
action with boundary terms could give the expectation values of the surface operators. We
are not certain of the boundary terms, which involves the conjugate momenta of the gauge
potential and coordinate. Nevertheless, there are a few remarkable points on the bulk
actions. Firstly for the straight Wilson surface operators, the bulk actions are quadrat-
ically divergent, and for the spherical ones, the bulk actions are both quadratically and
logarithmically divergent. These two cases are related to each other by conformal trans-

formation, being in consistence with argument from conformal anomaly [J]. Secondly,
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compared to the result on the Wilson surface operators in the fundamental representation
from the membrane approach, the bulk M5-brane action is (s times the membrane action
up to a numerical factor. The Q)5 characterizes the charges carried by the membrane and
also the rank of the representation. This fact implies that whatever the representation the
Wilson surface operators are in, the possible M5-brane action should have the same struc-
ture. Namely the actions take the similar form as (B.39), (f.14) for the straight surfaces
and (B.54), (.23) for the spherical surfaces, being of the divergent terms times the rank
of the representation. Thirdly, the fact that the solutions we found are all supersymmetric
indicates that the Wilson surface operators are supersymmetric too. This implies that
their expectation values should be exactly one since the bulk action should be vanishing
after taking into account the appropriate boundary terms. Furthermore, since there is no
conformal anomaly from boundary terms in our cases, the implication should make sense
both in the straight and the spherical cases.

Our solutions are the examples of M5-brane self-dual string soliton solutions in curved
spacetime. These solutions have been discussed in [Rf] from another approach. To our
knowledge, the string soliton solutions in curved spacetime have not been studied carefully
in the literature. The study of these soliton solution would be quite valuable and open a
new window to the study of M5-brane physics and M-theory. To find more string soliton
solution in curved spacetime and study their properties is an interesting question.

On the other hand, it would be very nice to understand the string soliton configura-
tions from the dynamics of nonabelian membranes. In the Wilson loop case, there exist
a dielectric description of F1(D1) blowing up to higher dimensional D-brane [[]. One
may wonder if the same story is true here. However, we have no good understanding of
nonabelian membrane action. In [i], a generalized Nahm equation has been proposed and
the funnel solution from membrane has been constructed. But it is still an open issue how
to construct the nonabelian membrane action, even in the flat spacetime [[]. In the case
at hand, we need to know the nonabelian action in curved spacetime with background flux.
We expect that some kind of Myers effect [[[T]] exists in M-theory. This is a very important
question.

The six-dimensional (2,0) superconformal field theory is very nontrivial. Some people
have proposed the DLCQ matrix description of the theory [L[9. It would be nice to see
if this description could address the Wilson surface operators issue. This may help us to
make the AdS/CFT dictionary in this case more precise.

The string soliton solutions constructed in this paper are half-BPS. It would be inter-
esting to find other string soliton solutions with less supersymmetry. These string soliton
solutions will correspond to the membranes ending on M5-branes in AdS7 x S* background.
For the discussion on such soliton solutions in flat spacetime, see [AJ].

There are several subtleties in our discussion. We are not satisfied with the boundary
terms we discussed. The main trouble comes from the ambiguity in choosing the action.
Unlike the DBI action for D-brane in string theory, there is no well-accepted action for
Mb5-brane. The different action may lead to different conjugate momenta and different
boundary terms. Moreover, we are not sure if the naive application of the prescription found
in the Wilson loop case is legal. Anyhow, the 3-form field in the M5-brane worldvolume is
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quite special. We have quite poor knowledge on it. Nevertheless, the action of the string
soliton solutions did catch the essential properties of the multi-wound Wilson surface and
the multi-Wilson surfaces. It would be very interesting to have a field theory calculation
of the expectation values of the Wilson surfaces.

The surface operators could also be an important order parameter in four-dimensional
gauge field theory. It has been used to study the geometric Langlands programme with
ramification [iJ]. The bubbling geometry picture of the surface operators in N' =4 SYM
has been proposed in [@] It would be interesting to illuminate the relations between
the surface operators in four-dimensional SYM and the Wilson surface operators in six-
dimensional (2,0)-theory.
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7. Various connections

In this appendix, we list various connections appeared in our calculation. For the induced
metric (B.9), its Christoffel symbol has nonvanishing components:

f
Ff’tzrgr:_T
f/
ry,=-1_ =————r
S T
T
. =—-=
rTr f +f 1+f/2
1 I
o= (- )
1 F2\ o
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When f = kr, some of the components above are vanishing.
For the AdS7 spacetime, its nonvanishing independent components of spin connection

are
1 1 11 .
w®:—ﬁ, u@:ﬁ, for i # 0,1
3 Y ,
wi; = s for i =4,5,6
4 Y Cos « ,
Vii Rrsina’ TP
5 ycos 3
5 _ 7.2
“66 Rrsinasin g (72)
For the metric (B.44), its Levi-Civita connection has components:
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(14 x2)sinn
The independent nonvanishing components of the spin connections with respect to the

vielbeins (B.50) are

1 1 1 9 sin 7 cos «
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L _ 1 _ 1 _ 1 _ Cosp
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Wgg = Wpy = — =, Wy = — —— : : .
66 it Rsinfsinhp’ 77 Rsinh psin 0 sin vy
For the metric ([.2), its Levi-Civita connection has components:
2 : 2 : .2
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. cos (o 4 cos (3
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where the index 7 indicates (;. And the nonvanishing components of the spin connection
of §* with respect to vielbeins ([L.7) are

1 2cos(q

1 1
Wy = W3z = Wy = _Rsingl’ (7.6)
9 9 2 cos (o 3 2 cos (3 (7.7)
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For the metric (4.17), its nonvanishing Levi-Civita connection components are of the
form
s _ s _ sind s _ sind . o
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The spin connection with respect to the vielbein ([.23) has the components:

1
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