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1. Introduction

One of the most important achievements in string theory is AdS/CFT correspondence [1],

which states that the quantum gravity in Anti-de-Sitter(AdS) spacetime is dual to the

large N limit of the superconformal field theory at AdS boundary. It not only opens a new

window to study the quantum gravity from its dual field theory, but also supplies a new

tool to study the gauge theory from its gravity dual.

The best studied case in AdS/CFT correspondence is AdS5/SY M4, where the bound-

ary field theory is an N = 4 super-Yang-Mills gauge theory. Many works have been devoted

to the study of the correspondence in this case. Among them, the study of the supersym-

metric Wilson loop operators [2, 3] is one of the most interesting issues. The Wilson loop

operators in gauge theory is defined to be the holonomy of the gauge field around a contour.

Their expectation values characterize the phase of the theory. From AdS/CFT dictionary,

the expectation values could be calculated by considering a fundamental string ending on

the boundary of AdS along the path specified by the Wilson loop operator. The area of

the string worldsheet bounded by the loop may give the expectation value of the Wilson

loop operator, after appropriate regularization. However, this is not the whole story. In

the field theory side, it has been found that the calculation of the expectation value of
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1/2-BPS circular Wilson loop in SY M4 could be reduced to a corresponding calculation in

a zero-dimensional matrix model [4]. There are two remarkable things. One is that though

the expectation value of the straight half-BPS Wilson line is exactly one, the one of the

circular loop is more involved, being a function of the ’t Hooft coupling. The circular loop is

related to the straight line by conformal transformation. The difference of the expectation

values of two cases comes from the conformal anomaly of the boundary. The other remark-

able point is that the calculation through the matrix model gives the expectation value not

only to all orders of ’t Hooft coupling λ = g2
YMN but also to all orders of 1/N [5], which

is just the string coupling gs from the correspondence. This indicates that the calculation

in gravity side should go beyond the free string limit.

Inspired by the field theory result, it has been found that the all-genus expectation

value of the 1/2 BPS Wilson loop operators is better described by the dynamics of the

D3-brane [6] or D5-brane [7], not just by the minimal surface of the string world-sheet [3],

especially when the charges of the string are large. Simply speaking, for the Wilson loop

in the symmetric representation or the multiply wound Wilson loop, the many coincident

fundamental strings could interact themselves and be described in terms of the dynamics

of D3-branes with electric flux [6]. This is reminiscent of the giant gravitons [8 – 10]. For

the Wilson loops in anti-symmetric representation, the interaction of the strings leads to

a better description in terms of the dynamics of the D5-brane with electric flux [7]. One

may also understand the above picture from Myers effect [11]: the string worldsheet in

the five-form field strength background may blow up in the transverse directions to form

dielectric brane [12]. The generalization to the Wilson-’t Hooft operators could be found

in [13].

Motivated by the success in the Wilson loop case, we are led to consider its cousin in

6-dimensional field theory. In this case, we have AdS7/CFT6 correspondence [14], where

the CFT6 is a six-dimensional superconformal field theory. This duality originate from the

the description of M5-brane in 11-dimensional M-theory. The near horizon limit of M5-

brane gravity solution in 11-dimensional supergravity is AdS7 × S4. And the low energy

effective field theory of coincident M5-brane is a (2, 0)-superconformal field theory [15, 16].

This field theory is quite mysterious [17]: its field content is of a tensor multiplet, including

a 2-form Bµν , four fermions and five scalars; the field strength of 2-form is (anti)self-dual.

The existence of the 2-form gauge field implies that there exist string like excitations in the

theory. However, there is no lagrangian formulation of the chiral 2-form, even though the

chiral theory is still a local interacting field theory [18]. The theory has been suggested to

be described by DLCQ matrix theory [19]. In any sense, it has not been well understood.

The AdS/CFT correspondence supplies a new tool to probe this nontrivial six-dimensional

field theory. The weak version of the correspondence says that the large N limit of the

(2, 0) field theory is dual to 11D supergravity on AdS7 × S4 [1]. Some properties of the

field theory has been studied from its dual gravity, including the correlation functions of

the chiral primary operators and the Wilson surface operators [2, 20]. The Wilson surface

operators in (2, 0) theory could be formally defined as [21]

W0(Σ) = exp i

∫

Σ
B+, (1.1)
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where Σ is a two-dimensional surface. From AdS/CFT correspondence, its expectation

value could be calculated from the membrane action as

< W0(Σ) >= e−S (1.2)

where S is the action of the membrane whose worldvolume boundary is Σ. The action is

divergent and needs renormalization. Unlike its cousin the Wilson loop, the surface oper-

ator has conformal anomaly since even dimensional submanifold observable is conformally

anomalous [22]. For example, the membrane action corresponding to the spherical Wilson

surface has both quadratic and logarithmic divergences. The existence of logarithmic di-

vergence indicates that the expectation value of Wilson surface may not be well-defined.

Unlike the Wilson loop operator, only abelian Wilson surface operator has been discussed

in the literature. The field theory study could be found in [23]: the conformal anomaly of

abelian Wilson surface operator was calculated in A1 field theory. It is very hard to consider

the nonabelin Wilson surface in the field theory. In [20], from AdS/CFT correspondence,

the Wilson surface operators in the fundamental representation has been studied. It would

be interesting to see if we can find the M5-brane description of the Wilson surface in higher

dimensional representation, just like the case in the Wilson loop. Especially, we want to

consider the 1/2-BPS Wilson surface operators. We will show in this paper that this is

feasible.

We must be cautious in talking about the BPS Wilson surface in higher dimensional

representation, since we have no idea on how to define it rigorously in the field theory.

Formally we can define the Wilson surface in representation R to be

WR(Σ) = TrRP [exp i

∫

Σ
(B+ + · · · )], (1.3)

where · · · denotes the possible scalar fields and fermions so that we have a 1/2-BPS Wilson

surface operators. Without a lagrangian formulation of the chiral 2-form field theory, it is

not clear how to find the half-supersymmetric operators and what the expectation value

of WR(σ) really means. It could be better to understand the situation from brane picture.

The surface Σ could be taken as the intersection of membrane with the M5-branes. In

brane configuration, a Wilson surface operator in the rank k symmetric representation,

corresponds to a k-wound membrane ending on Σ,1 while a Wilson surface operator in the

rank m antisymmetric representation corresponds to m membranes ending on M5-branes.

These are the two most simplest cases, which we will study in this paper. For more general

representation, one may get the brane picture from the lesson in the Wilson loop case [24].

From AdS7/CFT6 correspondence, the expecation value of the Wilson surface could

be calculated by the regularized volume of the membrane ending on the M5-brane with

boundary Σ. For the multi-wrapped Wilson surface, the interaction among membranes may

induce a blow-up of the membrane to M5-brane wrapping S3. The dynamics of M5-brane

with self-dual field strength encodes the information of the Wilson surface. Analogue to

1Strictly speaking, there could be a small difference between symmetric representation and multi-wound

surfaces. In the Wilson loop case, this issue has been addressed in [25].
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the Wilson line case, the expectation value of the Wilson surfaces could still be calculated

from (1.2) but now the action is the M5-brane action with appropriate boundary terms.

However, unlike the Dp-brane, the M5-brane dynamics is much more involved. From the

M5-brane point of view, the membranes are the self-dual string soliton. The first step

in our investigation is to find the self-dual string soliton solution of M5-brane, whose

worldvolume is embedded in AdS7 ×S4 background. In a curved spacetime, the equations

of motion of M5-brane looks forbidding and hard to solve. There is no careful discussion

on this issue. Most of the discussion on M5-brane string soliton have been focused on

the flat spacetime. We will start from the covariant equations of motion and construct

the M5-brane soliton solutions corresponding to the higher-dimensional Wilson surfaces.

The similar brane configurations has been discussed in [26] in Pasti-Sorokin-Tonin(PST)

formalism. Our results are in agreement with the ones in [26].

This investigation is rewarding. It may help us to understand better the dynamics of

the M5-brane, give prediction on the expectation value of multi-wrapped Wilson surface,

which has not been worked out in six-dimensional (2,0) theory. It could also shed light on

the membrane interaction and the possible Myers effect in M-theory.

The paper is organized as follows. In the next section, we give a brief review of the M5-

brane equations of motions. In section 3, we work out M5-brane string soliton solutions,

whose worldvolume is embedded into AdS7 and is of topology AdS3 × S3. We consider

both the straight Wilson surface and the spherical Wilson surface. These soliton solutions

describes the Wilson surface operator in the symmetric representation. In section 4, we

study another kind of string soliton solutions with the same topology but with S3 part in

S4. They describe the straight and spherical Wilson surface operators in the antisymmetric

representation. For both kinds of solutions, we discuss their properties, including charges,

bulk actions, boundary terms. In section 5, we show that our solutions are half-BPS.

This suggests that the corresponding Wilson surface operators are also 1/2-BPS in the

field theory. We end with the conclusion and discussions. In appendix, we list various

connections used in our calculation.

2. The M5-brane equations of motion and actions

In this section, we give a brief review of the M5-brane covariant equations of motions in

curved spacetime. For a review on various aspects of M5-brane, see [27].

The M5-brane covariant equations of motion in eleven dimension was first proposed

in [28] in superembedding formalism [29], and was then rederived by requiring κ-symmetry

of an open M2-brane ending on the M5-brane [30]. For other derivations from various

actions, please see [31, 32]. We only care about the bosonic components of the equations,

which include the scalar equation and tensor equation. The scalar equation takes the form

Gmn∇mEc
n =

Q√−g
ǫm1···m6

(

1

6!
Ha

m1···m6
+

1

(3!)2
Ha

m1m2m3
Hm4m5m6

)

P c
a (2.1)

and the tensor equation is of the form

Gmn∇mHnpq = Q−1(4Y − 2(mY + Y m) + mY m)pq. (2.2)
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Here our notation is as follows: indices from the beginning(middle) of the alphabet refer

to frame(coordinate) indices, and the underlined indices refer to target space ones.

Let us spend some time to explain the quantities in the above equation. There exists a

self-dual 3-form field strength hmnp on the M5-brane worldvolume. From it, we can define

k n
m = hmpqh

npq, (2.3)

Q = 1 − 2

3
Trk2, (2.4)

m q
p = δ q

p − 2k q
p , (2.5)

Hmnp = 4Q−1(1 + 2k) q
mhqnp (2.6)

Note that hmnp is self-dual with respect to worldvolume metric but not Hmnp. The induced

metric is simply

gmn = Ea
mEb

nηab (2.7)

where

Ea
m = ∂mzmEa

m. (2.8)

Here zm is the target spacetime coordinate, which is a function of worldvolume coordinate

ξ through embedding, and E
a
m is the component of target space vielbein. From the induced

metric, we can define another tensor

Gmn =

(

1 +
2

3
k2

)

gmn − 4kmn. (2.9)

We also have

P c
a = δc

a − Em
a E c

m . (2.10)

Note that in the scalar equation of motion, the covariant derivative ∇mEc
n involves not

only the Levi-Civita connection of the M5-brane worldvolume but also the spin connections

of the target spacetime geometry. More precisely one has

∇mEc
n = ∂mEc

n − Γp
mnEc

p + Ea
mEb

nω
c
ab (2.11)

where Γp
mn is the Christoffel symbol with respect to the induced worldvolume metric and

ω
c
ab is the spin connection of the background spacetime.

Moreover, there is a 4-form field strength Ha
1
···a

4
and its Hodge dual 7-form field

strength Ha
1
···a

7
:

H4 = dC3

H7 = dC6 +
1

2
C3 ∧ H4 (2.12)

The frame indices on H4 and H7 in the above equations (2.1), (2.2) have been converted

to worldvolume indices with factors of Ec
m. From them, we can define

Ymn = [4 ⋆ H − 2(m ⋆ H + ⋆Hm) + m ⋆ Hm]mn, (2.13)
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where

⋆Hmn =
1

4!
√−g

ǫmnpqrsHpqrs (2.14)

The field Hmnp is defined by

H3 = dA2 − C3, (2.15)

where A2 is a 2-form gauge potential and C3 is the pull-back of the bulk gauge potential.

From its definition, H3 satisfies the Bianchi identity

dH3 = −H4 (2.16)

where H4 is the pull-back of the target space 4-form flux. Note that different from the

3-form field h3 which is self-dual on the worldvolume of M5-brane, H3 satisfies a nonlinear

self-duality condition:

∗Hmnp = Q−1G q
mHnpq. (2.17)

This condition could be rewritten in the following form

∗H3 =
∂K
∂H3

, (2.18)

where

K = 2

√

1 +
1

12
H2 +

1

288
(H2)2 − 1

96
HabcHbcdHdefHefa. (2.19)

It would be nice to derive the above equations of motion from an action. However,

compared to the Dp-brane action, which is just a Dirac-Born-Infeld(DBI)-type action, M5-

brane action is much more subtle since it describe a self-interacting chiral 2-form whose

field strength is self-dual. In [33, 34], a manifestly supercovariant and kappa-invariant

action has been constructed. It contains an auxiliary scalar, from which the self-duality

condition could be derived as an equation of motion. The covariant bosonic action is of a

DBI-like form2

Sc = T5

∫

d6x

(
√

− det(gmn + iH̃mn) −
√−g

4
H̃mnHmn

)

− T5

∫

Z6 (2.20)

where

Z6 = C6 −
1

2
C3 ∧ H3, (2.21)

and T5 is the tension of the M5-brane:

T5 =
1

(2π)5l6p
. (2.22)

Here Z6 is the Wess-Zumino term, in which C6 and C3 are the pull-back of the target space

gauge potential. In the action, one has

H̃mn = (∗H)mnpvp, (2.23)

Hmn = Hmnpv
p, (2.24)

2For an equivalent formulation with the same philosophy, see [35].
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by introducing an auxiliary field b whose normalized derivative is

vp =
∂pb√−gmn∂mb∂nb

. (2.25)

Note that the vector ~v is timelike, vpv
p = −1 and one has the freedom in choosing vp.

The equation of motion of the auxiliary field b is not independent. It is a consequence of

the equation of motion of the 2-form gauge potential, which takes the following form after

appropriate gauge fixing:

Hmn = Vmn, (2.26)

where

Vmn = − 2√−g

δ
√

− det(gmn + iH̃mn)

δH̃mn
. (2.27)

The relation (2.26) is actually a generalized self-dual condition.

This proposal has some troubles in defining a proper partition function, since the

topological class of auxiliary scalar would break some symmetries of M-theory, as pointed

out in [18]. The resolution of this problem is to embed the chiral theory into a non-chiral

one. In [31], a nonchiral M5-brane action for unconstrained 2-form gauge potential has

been constructed. In this action, one has to impose a non-linear self-duality condition to

ensure kappa-symmetry. And the equation of motion for 2-form potential is equivalent to

the Bianchi identity. The action is given by

S = SM5 − SWZ = T5

∫ (

1

2
⋆ K − Z6

)

(2.28)

There are two remarkable relation on K, when the nonlinear self-duality condition (2.18)

holds:

K = 2K = 2

√

1 +
1

24
HmnpHmnp,

K = 2Q−1 − 1. (2.29)

It has been proved in [32] that the two different actions (2.20) and (2.28) are equivalent,

leading to the same set of equations of motion.

3. M5-brane description of the Wilson surface in the symmetric represen-

tation

The AdS7×S4 spacetime could be taken as the near horizon geometry of M5-brane gravity

solution. It is also the maximally supersymmetric solution in 11-dimensional supergravity,

whose equations of motion take the form,

RMN =
1

2 × 3!
HMPQRH PQR

N − 1

6 × 4!
gMNHPQRSHPQRS , (3.1)

0 = ∂M

√−gHMNPQ +
1

2 × (4!)2
ǫM1···M8NPQHM1···M4

HM5···M8
(3.2)
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where the indices take values from 0 to 10. The metric and background 4-form flux of

AdS7 × S4 are

ds2 =
R2

y2
(dy2 − dt2 + dx2 + dr2 + r2dΩ2

3) +
R2

4
dΩ2

4

H4 =
3R3

8
sin3 ζ1 sin2 ζ2 sin ζ3dζ1 ∧ dζ2 ∧ dζ3 ∧ dζ4 (3.3)

where dΩ2
3 is the metric of S3 and dΩ2

4 is the metric of S4. The 4-form field strength fills

in S4, in which ζi, i = 1, 2, 3 are three angular coordinates in S4. Note that the radius of

AdS7 is twice the one of S4. Here since our discussion following will focus on the AdS7 in

this section, we rescale its radius to be R. From the AdS7/CFT6 duality, we know that

R = (8πN)
1

3 lp, (3.4)

where lp is the Planck constant in eleven dimensions.

3.1 Straight Wilson surface

The standard description of the Wilson surface in AdS/CFT correspondence is the bound-

ary of a minimal area membrane worldvolume in AdS7 × S4 background. For the straight

Wilson surface, we can set the membrane worldvolume to be extended in the directions

y, t, x and fixed at r = 0. From the AdS/CFT dictionary, the expectation value of the

Wilson surface operator depends on the volume of the membrane through (1.2). In the

straight Wilson surface case, the volume with respect to the induced metric is

V2 =

∫

R3

y3
dydtdx

= TX
R3

2y2
0

, (3.5)

where T,X is the lengths of the t, x directions. Here we have introduced a cutoff y0 to

regularize the volume. The action is just

S = T2V2 =
N

π
TX

1

y2
0

, (3.6)

where T2 = 1
(2π)2l3p

is the membrane tension. The action is proportional to the area of the

surface and is also of quadratic divergence.

To have a M5-brane description of the Wilson surface in the high rank representation,

we have to find the appropriate M5-brane solution first. Inspired by the study of the Wilson

loop, one may attempt to try a M5-brane with worldvolume AdS3 × S3 [36]. The induced

membrane worldvolume is an AdS3 and the blow-up of the background flux gives an S3.

In the case of the straight Wilson surface, let the worldvolume coordinates of M5-brane be

ξi, i = 0, . . . 5 and the embedding be

ξ0 = t, ξ1 = x, ξ2 = r, y = f(r), (3.7)

ξ3 = α, ξ4 = β, ξ5 = γ (3.8)

– 8 –
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where α, β, γ are the angular coordinates of S3. The induced metric is then

ds2
ind =

R2

f2
(−dξ2

0 + dξ2
1 + (1 + f

′2)dξ2
2 + r2dΩ2

3)

=
R2

f2
(−dt2 + dx2 + (1 + f

′2)dr2) +
R2r2

f2
(dα2 + sin2 αdβ2 + sin2 α sin2 βdγ2)

(3.9)

where the prime denotes the derivative with respect to r. Without causing confusion, we

simply let t, x, r, α, β, γ be the coordinates of the M5-brane worldvolume.

There is a self-dual 3-form field strength in the M5-brane worldvolume. Let us assume

it to be

h3 =
a

2
(1 + ⋆ind)

√
det Gdα ∧ dβ ∧ dγ (3.10)

where a could be a function of r and detG is the determinant of the metric of S3. In our

case, we have

h3 =
a

2

(

R

f

)3

(r3 sin2 α sin βdα ∧ dβ ∧ dγ +
√

1 + f ′2dt ∧ dx ∧ dr). (3.11)

Then we can calculate the relevant quantities kmn, Gmn etc. Here we list the quantities

which will be useful to our following discussion:

k2 = kmnkmn =
3

2
a4,

k n
m =

(

−a2

2 I3 0

0 a2

2 I3

)

,

Gtt = −Gxx = −
(

f

R

)2

(1 + a2)2,

Grr =

(

f

R

)2 (1 + a2)2

1 + f ′2
,

Gαα =

(

f

Rr

)2

(1 − a2)2,

Gββ =

(

f

Rr sinα

)2

(1 − a2)2

Gγγ =

(

f

Rr sinα sin β

)2

(1 − a2)2, (3.12)

where I3 is a rank 3 identity matrix, and

H3 = 2a

(

R

f

)3(
√

1 + f ′2

1 + a2
dt ∧ dx ∧ dr +

r3

1 − a2
sin2 α sinβdα ∧ dβ ∧ dγ

)

(3.13)

The non-chiral five-brane action is just

S = T5

∫

dtdxdrdαdβdγ

(

R

f

)6

r3 sin2 α sinβ

(

√

1 + f ′2
1 + a4

1 − a4
− 1

)

(3.14)
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Since there is no pull-back of bulk 4-form field strength on the M5-brane worldvolume,

we have dH3 = 0, which gives the constraint

a

1 − a2

r3

f3
= constant (3.15)

The equation of motion on the tensor Hnpq, in this case, is

Gmn∇mHnpq = 0. (3.16)

Here ∇m is the covariant derivative with respect to the induced metric. We list the detailed

Levi-Civita connection in appendix. It is straightforward to check that the above equation

is satisfied, provided that a is a constant. Then from dH = 0, we can determine

f(r) = κr, (3.17)

where κ is just a constant. This is reminiscent of the solution in the straight Wilson line

case [6, 13] in AdS5×S5 and the spiky solution in flat spacetime [37, 38]. Then the induced

metric of M5-brane is

ds2 =
R2

κ2r2
(−dt2 + dx2 + (1 + κ2)dr2) +

R2

κ2
(dα2 + sin2 αdβ2 + sin2 α sin2 βdγ2). (3.18)

This indicates that the worldvolume of M5 brane is actually AdS3×S3, with radius R
√

1+κ2

κ

in AdS3 and radius R
κ

in S3. The self-dual 3-form field strength is then

h3 =
a

2

R3

κ3

(

sin2 α sin βdα ∧ dβ ∧ dγ +

√
1 + κ2

r3
dt ∧ dx ∧ dr

)

(3.19)

and

H3 = 2a
R3

κ3

(

1

1 − a2
sin2 α sinβdα ∧ dβ ∧ dγ +

√
1 + κ2

(1 + a2)r3
dt ∧ dx ∧ dr

)

(3.20)

For the scalar equation of motion, it is more involved. In our case, we have

E0
t =

R

κr
, E1

r =
R

r
, E2

x =
R

κr
, E3

r =
R

κr
,

E4
α =

R

κ
, E5

β =
R sin α

κ
, E6

γ =
R sin α sinβ

κ
, (3.21)

where we have set the veilbein of AdS7 part of the target spacetime as

θ̂0 =
R

y
dt, θ̂1 =

R

y
dy, θ̂2 =

R

y
dx, θ̂3 =

R

y
dr,

θ̂4 =
Rr

y
dα, θ̂5 =

Rr sin α

y
dβ, θ̂6 =

Rr sin α sin β

y
dγ. (3.22)

The corresponding spin connection could be found in appendix.

The scalar equation of motion involves

∇mEc
n = ∂mEc

n − Γp
mnEc

p + Ea
mEb

nω
c
ab (3.23)
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where Γp
mn is the Christoffel symbol and ω

c
ab is the spin connection of the background

spacetime. The calculation shows that

Gmn∇mEc
n = 0, except c = 1 or 3. (3.24)

The nontrivial components come from c = 1 or 3. The right hand side of the scalar equation

of motion consists of the matrix P
c
a = δ

c
a − Em

a E c
m , which has nonvanishing components

P c
a =

(

1
1+κ2 − κ

1+κ2

− κ
1+κ2

κ2

1+κ2

)

. (3.25)

where a, c take values 1, 3.

For the background flux, we have a dual 7-form field strength in AdS7 part,

H01···6 =
6

R
(3.26)

Note that our convention is a little different from the literature by a factor 2 since we have

rescaled the radius of AdS7.

On the right hand side of the scalar equation, only 7-form field strength contributes

since the M5-brane worldvolume is embedded simply into AdS7 and there is no induced

4-form field strength on it.

It turns out that the nontrivial components c = 1 and 3 of the scalar equation of

motion give the same constraint:

(1 + a2)2

1 + κ2
+ (1 − a2)2 = −2

1 − a4

√
1 + κ2

. (3.27)

This equation could be solved and gives the relation

a =
±κ√

1 + κ2 − 1
(3.28)

In short, we have obtained a string soliton solution of M5-brane, once the relation (3.28)

is satisfied. We will show in section 5 that our solution is indeed half-BPS. This solution

matches with the one found in section 2.3 in [26].

Let us consider some properties of this string soliton solution. One can calculate the

charges of this string soliton. Since our solution could be taken as M2-branes ending on M5-

brane, with M2-brane worldvolume extending along t, x, r, the charges could be calculated

by

QE =
1

Vol(S3)

∫

S3

⋆H (3.29)

QM =
1

Vol(S3)

∫

S3

H (3.30)

where S3 is the transverse S3 and ⋆ here means the Hodge dual with respect to the metric

of the M5-brane worldvolume without the string soliton. Here is a subtlety. If we take the
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strategy suggested in [29] and think that the metric of the 5-brane worldvolume without

string soliton is just

ds2 =
R2

κ2r2
(−dt2 + dx2 + dr2) +

R2

κ2
(dα2 + sin2 αdβ2 + sin2 α sin2 βdγ2) (3.31)

which indicates that the worldvolume is a AdS3×S3 with the same radius, then our solution

has opposite electric and magnetic charge:

QE = ± R3

l3pκ
2

(3.32)

QM = ∓ R3

l3pκ
2
. (3.33)

However, the above treatment could be problematic. When we turn off the charge, the

S3 part shrinks also so we have no M5-brane worldvolume anymore. This means that the

solution is not the same self-dual string soliton on M5-brane as the one discussed in [29]. It

is more like the case in [6], where a D3-brane is blown up by the Wilson line. Analogously,

it would be better to calculate the charge from the action itself. For the magnetic charge,

the above result is fine. But for the electric charge, it could be better to start from the

conjugate momentum of the 2-form gauge potential, which is defined to be

Π = 2
δL

δ(∂tAxr)
. (3.34)

In the Wilson loop case, the conjugate momentum to the gauge potential gives the charge

of F1-strings. We expect that the conjugate momentum of the 2-form gauge potential gives

the electric charge of membranes. Let us first start from the non-chiral action. Using the

nonlinear self-duality relation (2.18), we have

Π = ∗H, (3.35)

where ∗ is respect to the induced metric of M5-brane. So, in this sense, the electric charge

of the Wilson surface is

QE = ±R3
√

1 + κ2

l3pκ
2

, (3.36)

which is different from the magnetic charge.

However, if we start from the covariant action (2.20), then the conjugate momentum

is not so simple, it is

Π′ =





√−g
√

− det(gmn + iH̃mn)
− 1



 ∗ H, (3.37)

which in this case gives

Q′
E = −

(

1 +
1√

1 + κ2

)

QE. (3.38)
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Therefore, we have shown that the conjugate momentum of the gauge potential de-

pends on the choice of the action. We are not certain which one we should use. Fortunately,

the magnetic charge is always well-defined. It characterize the winding number of mem-

branes ending on the M5-brane. We will use it in our following discussion.

It is remarkable that the sign in (3.28) has physical implication. From the discussion

on the charge, we know that QM is proportional to −a. So the minus sign in (3.28)

means that we have membranes ending on the M5-brane, while the plus sign in (3.28)

indicates anti-membranes on M5-brane. We will see that both cases the soliton solution is

half-supersymmetric.

It is also interesting to consider the bulk action in different formalism. From the

nonchiral action (2.28), the action of M5 brane in this case is

S = T5

∫

dtdxdrdαdβdγ

(

R

κr

)3(R

κ

)3

sin2 α sin β

(

κ2

2

)

.

The integral over r in the action shows that it is quadratically divergent and is pro-

portional to the area of the Wilson surface:

S =
N |QM |

4π2
TX

1

y2
0

, (3.39)

where T and X indicates the integral over t and x, and y0 is a cut-off. Compared with

the result from the membrane calculation (3.6) , we find that basically they differs by

a QM factor. This fact indicates that for a Wilson surface operator in the symmetric

representation its expectation value is QM times the one of the fundamental representation.

Recall that QM is the charge of the membrane and should be identified with the rank of the

representation. This is very similar to the Wilson line case. However, there is a difference

besides QM in the prefactor. It could be absorbed in the cutoff. Or it indicates that these

quadratic divergence should be cancelled by appropriate counter terms, considering the

BPS nature of the configuration which will be shown in section 5.

Unlike the infinite straight Wilson line case, the action of M5-brane is not vanishing,

but is proportional to the charge. This is not strange since our soliton solution is a self-dual

one, with both electric and magnetic charge. Even in the BPS Wilson-t’ Hooft line case,

the action of D3-brane is not vanishing if not taking into account of the boundary term [13].

Our case here is very similar. The BPS nature of our solution suggests that if we take into

account of the boundary term, the action could be vanishing. However the boundary terms

in our case seems to be tricky. One may naively work out the conjugate momenta of y and

Axr. For the 2-form gauge potential, its conjugate momentum has been given as above,

and actually the contribution from ΠtxrHtxr exactly cancel the bulk action. This seems

indicate that one should only consider the boundary terms from conjugate momentum of

gauge potential. From the following discussions on other cases, we will see that the issue

is not so simple.

One could also study the action from its covariant form (2.20). Since the action involves

an auxiliary field, it needs some efforts to carry it out. To simplify the calculation, one can
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choose the vector ~v to have nonvanishing components vt and vr. With this choice, one can

check that the generalized self-dual condition (2.18) is satisfied and

√

− det(gmn + iH̃mn) =

√

(−g)

(

1 +
1

2
TrH̃2

)

. (3.40)

The straightforward calculation shows that the action of the solution is identical to the one

from nonchiral action. However, one should note that since the conjugate momentum of

the gauge potential from covariant action is different from the one from nonchiral action,

the boundary term gives the different contribution. It is not clear which action one should

use to discuss the boundary terms. It turns out for the soliton solutions studied in this

paper, the two bulk actions are the same. For the boundary terms, we will just focus on

the ones from the nonchiral action.

Note that for this solution, we can take M5-brane as the blow-up of M2-brane. This is

reminiscent of the D3-brane description of the Wilson line studied in [6]. In the Wilson line

case, if the Wilson operator belongs to the symmetric representation, its brane description

is D3-brane, which has the worldvolume AdS2×S2 embedded in AdS5. While if the Wilson

operator belongs to the antisymmetric representation, its brane description is a D5-brane,

which has the worldvolume AdS2 × S4 with AdS2 in AdS5 and S4 in S5 [7]. In our case,

we have a M5-brane description of the infinite straight Wilson surface. Since this M5-

brane worldvolume is completely embedded in AdS7, analogue to the Wilson line case, we

may take the M5-brane solution discussed in this section correspond to the Wilson surface

operator in the “symmetric representation”. Intuitively, we can take the Wilson surface

in the “symmetric representation” as the multi-wound Wilson surface. Later on, we will

see that there is another M5-brane description of the Wilson surface in the “antisymmetric

representation”, where the M5-brane worldvolume is still a AdS3 × S̃3 but with S̃3 in S4.

3.2 Spherical Wilson surface

The spherical Wilson surface could be obtained from the straight Wilson surface through a

conformal transformation. The spherical Wilson surface in the fundamental representation

was firstly studied in [20] in the context of AdS/CFT correspondence. Unlike the straight

Wilson surface, whose membrane boundary is a two-plane, the boundary of membrane for

a spherical Wilson surface is a two-sphere. With the same philosophy, one can get the

action of the membrane [20]

S = 2N

(

2L2

ǫ2
− 2 ln

2L

ǫ
− 1 + O(ǫ)

)

(3.41)

where L is the radius of two-sphere. It has both the quadratic and logarithmic divergences.

In order to consider the M5-brane description of the spherical Wilson surface, it is

more convenient to work in the Euclidean signature as in [6] and start with the following

metric of AdS7:

ds2 =
R2

y2
(dy2 + dr2

1 + r2
1(dα2 + sin2 αdβ2) + dr2

2 + r2
2(dγ2 + sin2 γdδ2). (3.42)
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The Wilson surface will be placed at r1 = L and r2 = 0. Let us change the coordinates

(r1, r2, y) to (ρ, η, θ) by the following relation:

r1 =
L cos η

cosh ρ − sinh ρ cos θ
, r2 =

L sinh ρ sin θ

cosh ρ − sinh ρ cos θ
, y =

L sin η

cosh ρ − sinh ρ cos θ
, (3.43)

then we have the AdS7 metric as

ds2 =
R2

sin2 η

(

dη2+cos2 η(dα2+sin2 αdβ2)+dρ2+sinh2 ρ(dθ2+sin2 θdγ2+sin2 θ sin2 γdδ2)
)

(3.44)

Here, the coordinates take the range ρ ∈ [0,∞), θ, α, γ ∈ [0, π), β, δ ∈ [0, 2π), η ∈ [0, π/2).

To find the appropriate M5-brane that describes the blow-up of the Wilson surface,

we may take (ρ, α, β, θ, γ, δ) as the worldvolume coordinates of M5-brane and assume that

η be only the function of ρ. Equivalently, we can think η instead of ρ as the worldvolume

coordinate. Inspired by the solution in D3-brane of the Wilson line, we make the following

ansatz between η and ρ:

sin η = κ−1 sinh ρ, (3.45)

then the induced metric is

ds2 =
R2

sin2 η

(

1 + κ2

1 + κ2 sin2 η
dη2 + cos2 η(dα2 + sin2 αdβ2)

)

+R2κ2(dθ2 + sin2 θdγ2 + sin2 θ sin2 γdδ2). (3.46)

We turn on the self-dual field strength on the M5-brane:

h3 = 2a

(

i

(

R

sin η

)3
√

1 + κ2

1 + κ2 sin2 η
cos2 η sinαdη ∧ dα∧ dβ + R3κ3 sin2 θ sin γdθ ∧ dγ ∧ dδ

)

.

(3.47)

Notice that due to the Euclidean signature, there is a factor i in hηαβ . Similarly we can

work out kmn, k2, Q and open membrane metric Gmn. The field strength H3 is just

H3 = 2a

(

i
1

1 + a2

(

R

sin η

)3
√

1 + κ2

1 + κ2 sin2 η
cos2 η sin αdη ∧ dα ∧ dβ

+
1

1 − a2
R3κ3 sin2 θ sin γdθ ∧ dγ ∧ dδ

)

. (3.48)

With these setups, let us check if they satisfy the equation of motion. The components

of Levi-Civita connection of the metric (3.46) are listed in appendix. It is straightforward

but tedious to check that the tensor equation is satisfied. For the scalar equation, we have

E1
η =

R

sin η
, E2

α =
R cos η

sin η
, E3

β =
R cos η sin α

sin η
,

E4
η =

κR cos η

sin η
√

1 + κ2 sin2 η
, E5

θ = κR, Eu6
γ = κR sin θ, E7

δ = κR sin θ sin γ. (3.49)
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Here the vielbein of the metric (3.44) are

θ̂1 =
R

sin η
dη, θ̂2 =

R cos η

sin η
dα, θ̂3 =

R cos η sinα

sin η
dβ, θ̂4 =

R

sin η
dρ,

θ̂5 =
R sinh ρ

sin η
dθ, θ̂6 =

R sinh ρ sin θ

sin η
dγ, θ̂7 =

R sinh ρ sin θ sin γ

sin η
dδ. (3.50)

From the scalar equation, we obtain one nontrivial relation coming from the cases when

c = 1 or 4:
κ√

1 + κ2
= −1 − a2

1 + a2
. (3.51)

This is actually the same relation (3.28) if we change κ → 1
κ
.

The charges of the string is the same as the ones in the straight Wilson surface case,

once we take into account the difference of the parameter κ in two cases.

The non-chiral action gives us

SM5 = T5

∫

∗K, (3.52)

where K = −1+a4

1−a4 .

The Wess-Zumino part of the action is more involved. The bulk 6-form gauge potential

is

C6 =

(

R

y

)6

r2
1r

2
2 sin α sin γdr1 ∧ dα ∧ dβ ∧ dr2 ∧ dγ ∧ dδ

= R6 cos3 η sinh3 ρ sin2 θ sin α sin γ

sin6 η
dρ ∧ dα ∧ dβ ∧ dθ ∧ dγ ∧ dδ

−R6 cos2 η sinh2 ρ sin3 θ sinα sin γ

sin5 η(cosh ρ − sinh ρ cos θ)
dη ∧ dα ∧ dβ ∧ dρ ∧ dγ ∧ dδ

+R6 cos2 η sinh3 ρ sin2 θ sinα sin γ(sinh ρ − cos θ cosh ρ)

sin5 η(cosh ρ − sinh ρ cos θ)
dη ∧ dα ∧ dβ ∧ dθ ∧ dγ ∧ dδ

(3.53)

The total bulk action of M5-brane turns out to be

S = T5(8π
3R6)

(

κ2

4

)(

1

η2
0

+ ln η0

)

=
N |QM |

2π

(

1

η2
0

+ ln η0

)

(3.54)

where η0 is a cutoff near 0. It is remarkable that from the form of the Wess-Zumino action

there could be quartic divergence. However it turns out to be vanishing in the end. So

the bulk action is actually of both quadratic and logarithmic divergences, with the similar

structure as (3.41). Now κ2 = (8πN)−1QM , which is very small in the large N limit. Here

we have made the conformal transformation so the radius of the sphere does not appear in

the above expression. To compare with the existing result in the literature, we can replace
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1/η0 with L/η0 in the above relation, where L is the radius of sphere. It is remarkable

that the bulk action is linear in the charge QM of Wilson surface. This is consistent with

the result from the field theory calculation [20]. The divergence above has two origins, one

is from the conformal anomaly which relates the straight Wilson surface to the spherical

one, the other is from the divergence in the original straight Wilson surface. Since the

boundary of Wilson surface is 1-dimensional, it will not induce any conformal anomaly.

One may wonder the boundary terms also contribute to the action. Especially one may

wonder if the contribution from gauge potential part could cancel the above divergence

exactly. Unfortunately it is not the case anymore. After taking into account of it, the

nonchiral action is still logarithmically divergent:

SM5 + ΠtxrHtxr ∼ κ4

4
ln η0. (3.55)

Since κ2 is very small, the above contribution is next leading order result. In other words,

the leading order divergent term is actually cancelled by the boundary term.

It is remarkable that unlike the Wilson loop case, there is no finite contribution from

the integral directly, no matter if or not we take into account of the boundary terms.

Therefore we have a different story on Wilson surface from Wilson line. In the Wil-

son line case, the expectation of the straight Wilson line is vanishing and the one of the

circular Wilson line get the contribution from the conformal anomaly of the boundary. In

the Wilson surface case, the expectation values of both kinds of Wilson surfaces are not

vanishing.

4. M5-brane description of the Wilson surface in the antisymmetric rep-

resentation

In the study of the brane picture of the Wilson-loop, one knows that for the Wilson loop in

the anti-symmetric representation it should be described by D5-brane whose worldvolume

is of topology AdS2 × S4 with AdS2 being in AdS5 and S4 in S5 [7]. In the case of the

Wilson surface, one may expect that there exit another M5-brane description. We will show

in this section this is true. We find that though this M5-brane is of the same topology

AdS3 × S̃3, unlike the case we studied in the above sections, the S̃3 part is embedded in

S4.

4.1 Straight Wilson surface

Let the worldvolume coordinates of M5-branes be ξi, i = 0, . . . 5 and the embedding be

ξ0 = t, ξ1 = x, ξ2 = y,

ξ3 = ζ2, ξ4 = ζ3, ξ5 = ζ4, ζ1 = ζ0 (4.1)

where ζi are the angular coordinates of S4. Here we let ζ1 be fixed at a constant ζ0. The

induced metric is

ds2
ind =

R2

y2
(−dt2 + dx2 + dy2) +

R2 sin2 ζ0

4
(dζ2

2 + sin2 ζ2dζ2
3 + sin2 ζ2 sin2 ζ3dζ2

4 ). (4.2)
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In this case, we take the self-dual 3-form field strength on the M5-brane worldvolume

to be

h3 = 2aR3

(

1

y3
dt ∧ dx ∧ dy +

sin3 ζ0

8
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

(4.3)

Similar to the above cases, we can get kmn, k2 = 3
2a4 and Q = 1 − a4. The open

membrane metric Gmn take the diagonal form:

Gtt = −Gxx = −Gyy = (1 + a2)2
(

y

R

)2

,

G22 = (1 − a2)2
4

R2 sin2 ζ0
, G33 =

G22

sin2 ζ2
, G44 =

G22

sin2 ζ2 sin2 ζ3
, (4.4)

where Gii denotes Gζiζi . And the physical 3-form is

H3 = 2aR3

(

1

(1 + a2)y3
dt ∧ dx ∧ dy +

sin3 ζ0

8(1 − a2)
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

, (4.5)

satisfying dH3 = 0.

It is straightforward to check if it is possible and under what condition if possible that

the above ansatz satisfy the equations of motion. The tensor equation holds under the

above setup. For the scalar equation, the AdS3 part is trivially satisfied. For the S̃3 part,

we have

E2
ζ2

=
R sin ζ0

2
, E3

ζ3
=

R sin ζ0 sin ζ2

2
, E4

ζ4
=

R sin ζ0 sin ζ2 sin ζ3

2
, (4.6)

where we set the vielbein of S4 part to be

θ̂1 =
R

2
dζ1, θ̂2 =

R

2
sin ζ1dζ2, θ̂3 =

R

2
sin ζ1 sin ζ2dζ3, θ̂4 =

R

2
sin ζ1 sin ζ2 sin ζ3dζ4

(4.7)

We list the relevant Christoffel symbol with respect to (4.2) and the spin connection with

respect to (4.7) in appendix.

The nontrivial relation for the scalar equation comes from c = 1. Here the left hand

side of the equation is not vanishing due to the nonvanishing contribution from the spin

connection. And on the right hand side, since H1234 = 6
R

, it gives nonvanishing contribu-

tion. This leads to a relation

1 − a2 = −2
a sin ζ0

cos ζ0
(4.8)

or

a =
±1 + sin ζ0

cos ζ0
. (4.9)

Therefore, we have obtained another M5-brane soliton solution once (4.9) is satisfied. This

solution is the same one in section 2.2 in [26], discussed in PST formalism.
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Let us calculate the charges of the Wilson surface. The magnetic charge is easy to

obtain:

QM = −R3 sin2 ζ0 cos ζ0

8l3p
. (4.10)

For the electric charge, it is much subtler. One may define it from (3.29), which gives you

QE =
R3 sin3 ζ0 cos ζ0

8l3p
. (4.11)

On the other hand, one can define the electric charge from the conjugate momentum. In

this case, the conjugate momentum not only get contribution from the non-chiral action,

but also from the Wess-Zumino part. And in the Wess-Zumino part of the action, there

exist an ambiguity in defining the 3-form gauge potential. We make the following choice

C3 = −3

8
R3

(

− cos ζ0 +
1

3
cos3 ζ0

)

sin2 ζ2 sin ζ3.dζ2 ∧ dζ3 ∧ dζ4 (4.12)

Then the electric charge is

QE =
R3

16l3p
cos ζ0

(

sin3 ζ0 + 3 − cos2 ζ0
)

. (4.13)

Similar to the case in section 3, the sign in (4.9) is physical. The situation here is a

little subtler. No matter which sign we take, we always get the same formulae on magnetic

and electric charges. In other words, what kind of membrane the M5-brane feels depends

on cos ζ0 rather than the sign in (4.9). Nevertheless, we will show that the different choice

of sign indicates the different supersymmetries the soliton solution keeps.

Note that once we turn off the 3-form field on M5-brane, there still exists an M5-brane

solution, which reside at ζ0 = π/2. This means that the M5-brane without flux could be

embedded in the background without instability.

The bulk action is

S = T5

∫

(∗K − 2C3 ∧ H3)

=
T5

8
4π2R6TX

1

2y2
0

=
N2

2π
TX

1

y2
0

, (4.14)

which is quadratically divergent, and similar to (3.6). Now since QM ∼ N , the action is

still proportional to NQM . Similarly, if we try to take the contribution from boundary

terms coming from the conjugate momentum of gauge potential into account, we have

S ∼ sin2 ζ0 1

y2
0

. (4.15)
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4.2 Spherical Wilson surface

For the spherical Wilson surface, we have to do a conformal transformation of the above

one. The embedding of S̃3 in S4 is the same as before. For the AdS3 part, it is somehow

different. The metric of Euclideanized AdS7 take the form (3.42). Let us assume that the

spherical Wilson surface satisfy r2
1 + y2 = L2, namely a sphere S2 with radius L, and later

on we will check such kind of embedding satisfies the equations of motion. Let

y = L cos δ, r1 = L sin δ, (4.16)

then the AdS3 part of the induced metric of M5-brane is

ds2
ind =

R2

cos2 δ
(dδ2 + sin2 δ(dα2 + sin2 αdβ2)) (4.17)

The self-dual 3-form field strength on the M5-brane worldvolume could be set to

h3 = 2aR3

(

i
sin2 δ sin α

cos3 δ
dδ ∧ dα ∧ dβ +

sin3 ζ0

8
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

. (4.18)

From it, we can calculate the other quantities as before. The only differences from the

straight case are

Gδδ = (1 + a2)2
(

cos δ

R

)2

, Gαα =
Gδδ

sin2 δ
, Gββ =

Gδδ

sin2 δ sin2 α
. (4.19)

The physical 3-form field strength is now

H3 = 2aR3

(

i
1

1 + a2

sin2 δ sin α

cos3 δ
dδ ∧ dα ∧ dβ +

1

1 − a2

sin3 ζ0

8
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

.

(4.20)

For the scalar equation, the discussion on S̃3 part does not change and we find the

same relation as (4.8). We needs to check if the Euclideanized AdS3 part does not give

anything nontrivial. This could be checked explicitly. Now we have

E1
δ = −R sin δ

cos δ
, E2

δ = R, E3
α =

R sin δ

cos δ
, E4

β =
R sin δ

cos δ
sin α, (4.21)

where we have set the relevant vierbeins to be

θ̂1 =
R

y
dy, θ̂2 =

R

y
dr1, θ̂3 =

R

y
r1dα, θ̂4 =

R

y
r1 sin αdβ. (4.22)

Here we abuse the indices which we wish would not bring any confusion to the reader.

From the embedding, it is not obvious that ∇mEc
m = 0. However the explicit calculation

shows that this is indeed true. The relevant Levi-Civita connection and the spin connection

are put into appendix.
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Unlike the case discussed in section 3, the conformal transformation from straight

surface to sphere is somehow trivial. Therefore the charges of the membrane on M5-brane

is the same as (4.10), (4.13). The bulk action reads

S = 2π3R6T5

∫ π
2

0

sin2 δ

cos3 δ

=
π3

2
R6T5

(

2

ǫ2
− ln

2

ǫ

)

= N2

(

2

ǫ2
− ln

2

ǫ

)

, (4.23)

where ǫ is the cutoff near δ = π
2 . The terms in the bracket of (4.23) looks familiar. Actually,

in the above discussion we have chose the angular coordinates so that the radius of the

sphere does not show up. It is easily to recover it by replace 1/ǫ with L/ǫ. Then we have

the similar divergent terms as (3.41). The significant difference is that the M5-brane action

is proportional to the membrane charge QM .

5. Supersymmetry analysis

Let us check if the above solutions are supersymmetric. Firstly we need to work out

the Killing spinor of the bulk background. From the discussions above, we notice that

all the solution has a global symmetry SO(2, 2) × SO(4) × SO(4). In order to make the

analysis simpler, we first rewrite AdS7 × S4 metric in form of AdS3 × S3 × S̃3 fibred over

two-dimensional base space:

ds2 = R2
(

cosh2 ρ ds2
AdS3

+ sinh2 ρ dΩ2
3 + dρ2

)

+
R2

4

(

dζ2
1 + sin2 ζ1 dΩ̃2

3

)

, (5.1)

In the new fibred coordinates, the 4-form flux can be written as:

H4 =
6

R
e7 ∧ e8 ∧ e9 ∧ e10. (5.2)

Here we use ds2
AdS3

, dΩ2
3, dΩ̃2

3 to denote the metric of unit AdS3 and two unit S3’s, respec-

tively. The eM ’s, M = 0, . . . , 10 are the vielbein of this metric.

We use ΓM to denote the 11-dimensional Gamma matrices. They can be written as

the following form [39]:

Γ0 = γ8 ⊗ σ̌0 ⊗ 1 ⊗ 1 ⊗ σ1, Γ1 = γ8 ⊗ σ̌1 ⊗ 1 ⊗ 1 ⊗ σ1,

Γ2 = γ8 ⊗ σ̌2 ⊗ 1 ⊗ 1 ⊗ σ1, Γ3 = γ8 ⊗ 1 ⊗ σ̂3 ⊗ 1 ⊗ σ2,

Γ4 = γ8 ⊗ 1 ⊗ σ̂4 ⊗ 1 ⊗ σ2, Γ5 = γ8 ⊗ 1 ⊗ σ̂5 ⊗ 1 ⊗ σ2,

Γ6 = γ6 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1, Γ7 = γ7 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1,

Γ8 = γ8 ⊗ 1 ⊗ 1 ⊗ σ̃8 ⊗ σ3, Γ9 = γ8 ⊗ 1 ⊗ 1 ⊗ σ̃9 ⊗ σ3,

Γ10 = γ8 ⊗ 1 ⊗ 1 ⊗ σ̃10 ⊗ σ3. (5.3)

Here (γ6, γ7, γ8), (σ̌
1, σ̌2, σ̌3), (σ̂3, σ̂4, σ̂5), (σ̃8, σ̃9, σ̃10), (σ1, σ2, σ3) are five sets of Pauli ma-

trices and σ̌0 = iσ̌3.
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The first step is to find the Killing spinor in AdS7 × S4 with the above fibred coordi-

nates. In order to do so, we need to use the following Killing spinors of the unit AdS3 and

the two unit S3’s:

∇̊pχ̌
I
a′ =

i

2
a′σ̌pχ̌

I
a′ , (p = 0, 1, 2, a′ = ±1, I = 1, 2), (5.4)

∇̊pχ̂
J
b′ =

1

2
b′σ̂pχ̂

J
b′ , (p = 3, 4, 5, b′ = ±1, J = 1, 2), (5.5)

∇̊pχ
K
c′ =

i

2
c′σpχ

K
c′ , (p = 8, 9, 10, c′ = ±1,K = 1, 2), (5.6)

and decompose the 11-dimensional spinor ξ as

ξ =
∑

a′b′c′IJK

ǫa′b′c′IJKχ̌I
a′ ⊗ χ̂J

b′ ⊗ χK
c′ , (5.7)

where each ǫa′b′c′IJK is a pair of 2-dimensional spinors with γ6, γ7, γ8, σ1, σ2, σ3 acting on

it. In another word, each ǫa′b′c′IJK belongs to the tensor product of the space of the 2-

dimensional spinor and C2, and γ6, γ7, γ8 act on the space of the 2-dimensional spinor,

while σ1, σ2, σ3 act on C2.

From the Killing spinor equation and the above decomposition, we obtain the following

supersymmetric conditions:

(a′σ1 + i sinh ργ7 − i cosh ργ7σ3)ǫ = 0, (5.8)

(b′σ2 + cosh ργ7 − sinh ργ7σ3)ǫ = 0, (5.9)

(c′σ3 − cos ζ1γ
6 + sin ζ1γ

7σ3)ǫ = 0, (5.10)

∂ǫ

∂ρ
=

1

2
σ3 ǫ,

∂ǫ

∂ζ1
=

i

2
γ8σ3 ǫ. (5.11)

Now we begin to solve these equations. Using eq. (5.11), we find that ǫ can be written

as

ǫ = exp

(

1

2
σ3ρ +

i

2
γ8σ3ζ1

)

ζ. (5.12)

Here ζ is a pair of constant spinors. Then eqs. (5.8)–(5.10) lead to the following projective

conditions:

a′γ7σ2ζ = ζ, b′γ7σ2ζ = −ζ, c′γ6σ3ζ = ζ, (5.13)

Since for each a′, b′, c′, I, J,K, ǫa′b′c′IJK is a pair of two dimensional spinors and a′, b′, c′ =

±1, I, J,K = 1, 2, totally there are 28 components. After imposing 3 projection conditions

each of which project out half of the components, we have 25 complex components. Finally

imposing Majorana condition leaves 25 real components.

Now let us introduce the Gamma matrix ΓM5, which is determined by the M5-brane

worldvolume and the flux on it [28]:

ΓM5 =
1

6!
√−g

ǫj1···j6 [Γ<j1···j6> + 40Γ<j1j2j3>hj4j5j6 ]. (5.14)
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Here g is the determinant of the induced worldvolume metric component, hj4j5j6 is the

self-dual 3-form on the M5-brane. And Γ<j1···jn> is defined as

Γ<j1,...jn> = Ea
1

j1
· · · Ean

jn
Γa

1
···an

, (5.15)

where Γa
1
···an

is the product of the Gamma matrices in the frame.

The kappa symmetry projection condition is

ΓM5ξ = ξ. (5.16)

The amount of unbroken supersymmetry is determined by the solution of above equation.

For the straight Wilson surface case, the metric of the M5-brane and the self-dual

3-form flux on it can be written in the fibred coordinates as

ds2 = R2(cosh2 ρkds2
AdS3

+ sinh2 ρkdΩ2
3), (5.17)

h3 =
a

2
(e0 ∧ e1 ∧ e2 + e3 ∧ e4 ∧ e5)

=
a

2
R3

(

cosh3 ρk cosh ρ̃ sinh ρ̃dτ ∧ dρ̃ ∧ dθ̃ + sinh3 ρk sin2 α sinβdα ∧ dβ ∧ dγ
)

(5.18)

From this, after some short calculations, one get

ΓM5 = −(Γ01···5 + a(Γ012 − Γ345)) (5.19)

Using the above representation of Γµ, one can find that the condition (5.16) is equiv-

alent to

−σ3 ǫ + aγ8σ1 ǫ + iaγ8σ2 ǫ = ǫ. (5.20)

When ζ1 = 0, we have ǫ = exp(1
2σ3ρk)ζ, then the above equation is equivalent to

−σ3ζ − ζ + ae−ρkγ8σ1ζ + iae−ρkγ8σ2ζ = 0. (5.21)

From this, we can obtain the following supersymmetry condition for a, ρk and ζ:

a = ±eρk , ± γ8σ1ζ = ζ. (5.22)

The projection conditions on ζ here are compatible with the projection conditions in

eqs. (5.13) for the Killing spinors. So the supersymmetry conditions are satisfied by half

of the components of the Killing spinors. In another word, our solution is half-BPS. In the

case of ζ1 = π, we can similarly obtain the following supersymmetry conditions:

a = ±eρk , ∓ γ8σ1ζ = ζ. (5.23)

Let us set sinh ρk = 1
κ

to recover the induced metric (3.18) from fibred metric (5.1).

Then the relation (3.28) is exactly the relation a = ±eρk . This shows that our M5-brane

soliton solution corresponding to the straight Wilson surface is half-BPS. For the spherical

solution, we get the same conclusion.
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For the case of S̃3, we can similarly obtain,

ΓM5 = −(Γ01289(10) + a(Γ012 − Γ89(10))). (5.24)

Using eq. (5.3), we find that the relation (5.16) is equivalent to

σ2 ǫ + aγ8σ1 ǫ + iaγ8σ3 ǫ = ǫ (5.25)

for the straight Wilson surface. Now, we have ρ = 0, then ǫ = exp( i
2γ8σ3ζ

0)ζ, we can find

that the above equation is equivalent to
(

cos
ζ0

2
+ a sin

ζ0

2

)

σ2ζ +

(

a cos
ζ0

2
− sin

ζ0

2

)

γ8σ1ζ

−
(

cos
ζ0

2
+ a sin

ζ0

2

)

ζ − i

(

sin
ζ0

2
− a cos

ζ0

2

)

γ8σ3ζ = 0 (5.26)

This gives us the following supersymmetry conditions on a, ζ0 and ζ,

a =
±1 + sin ζ0

cos ζ0
, ± γ8σ1ζ = ζ. (5.27)

The first relation is exactly (4.9). As in the previous case, the projection condition here are

also compatible with the projection conditions eqs. (5.13). Then we have shown that our

solution in this case is half-BPS as well. The discussion on the spherical Wilson surface is

similar.

From the above discussion, we come to the conclusion that all our solutions are half-

BPS.

6. Conclusion and discussion

In this paper, we investigated the M5-brane soliton solutions in AdS7 × S4 background.

Starting from the covariant equations of motion of M5-brane, we found two classes of solu-

tions, both having AdS3×S3 topology. The AdS3 part is always in AdS7 but S3 could be in

AdS7 or S4. The two different configurations give the description of the Wilson surface op-

erators in the symmetric and the anti-symmetric representation respectively. We discussed

the properties of these solutions and their implications to the Wilson surface operators

from AdS/CFT correspondence. Unfortunately due to the shortage of the discussion on

the Wilson surface operators in six-dimensional (2,0)-theory side, we were not able to make

comparison more precisely.

From the dictionary of AdS/CFT correspondence, the exponential of bulk M5-brane

action with boundary terms could give the expectation values of the surface operators. We

are not certain of the boundary terms, which involves the conjugate momenta of the gauge

potential and coordinate. Nevertheless, there are a few remarkable points on the bulk

actions. Firstly for the straight Wilson surface operators, the bulk actions are quadrat-

ically divergent, and for the spherical ones, the bulk actions are both quadratically and

logarithmically divergent. These two cases are related to each other by conformal trans-

formation, being in consistence with argument from conformal anomaly [22]. Secondly,
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compared to the result on the Wilson surface operators in the fundamental representation

from the membrane approach, the bulk M5-brane action is QM times the membrane action

up to a numerical factor. The QM characterizes the charges carried by the membrane and

also the rank of the representation. This fact implies that whatever the representation the

Wilson surface operators are in, the possible M5-brane action should have the same struc-

ture. Namely the actions take the similar form as (3.39), (4.14) for the straight surfaces

and (3.54), (4.23) for the spherical surfaces, being of the divergent terms times the rank

of the representation. Thirdly, the fact that the solutions we found are all supersymmetric

indicates that the Wilson surface operators are supersymmetric too. This implies that

their expectation values should be exactly one since the bulk action should be vanishing

after taking into account the appropriate boundary terms. Furthermore, since there is no

conformal anomaly from boundary terms in our cases, the implication should make sense

both in the straight and the spherical cases.

Our solutions are the examples of M5-brane self-dual string soliton solutions in curved

spacetime. These solutions have been discussed in [26] from another approach. To our

knowledge, the string soliton solutions in curved spacetime have not been studied carefully

in the literature. The study of these soliton solution would be quite valuable and open a

new window to the study of M5-brane physics and M-theory. To find more string soliton

solution in curved spacetime and study their properties is an interesting question.

On the other hand, it would be very nice to understand the string soliton configura-

tions from the dynamics of nonabelian membranes. In the Wilson loop case, there exist

a dielectric description of F1(D1) blowing up to higher dimensional D-brane [12]. One

may wonder if the same story is true here. However, we have no good understanding of

nonabelian membrane action. In [40], a generalized Nahm equation has been proposed and

the funnel solution from membrane has been constructed. But it is still an open issue how

to construct the nonabelian membrane action, even in the flat spacetime [41]. In the case

at hand, we need to know the nonabelian action in curved spacetime with background flux.

We expect that some kind of Myers effect [11] exists in M-theory. This is a very important

question.

The six-dimensional (2,0) superconformal field theory is very nontrivial. Some people

have proposed the DLCQ matrix description of the theory [19]. It would be nice to see

if this description could address the Wilson surface operators issue. This may help us to

make the AdS/CFT dictionary in this case more precise.

The string soliton solutions constructed in this paper are half-BPS. It would be inter-

esting to find other string soliton solutions with less supersymmetry. These string soliton

solutions will correspond to the membranes ending on M5-branes in AdS7×S4 background.

For the discussion on such soliton solutions in flat spacetime, see [42].

There are several subtleties in our discussion. We are not satisfied with the boundary

terms we discussed. The main trouble comes from the ambiguity in choosing the action.

Unlike the DBI action for D-brane in string theory, there is no well-accepted action for

M5-brane. The different action may lead to different conjugate momenta and different

boundary terms. Moreover, we are not sure if the naive application of the prescription found

in the Wilson loop case is legal. Anyhow, the 3-form field in the M5-brane worldvolume is
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quite special. We have quite poor knowledge on it. Nevertheless, the action of the string

soliton solutions did catch the essential properties of the multi-wound Wilson surface and

the multi-Wilson surfaces. It would be very interesting to have a field theory calculation

of the expectation values of the Wilson surfaces.

The surface operators could also be an important order parameter in four-dimensional

gauge field theory. It has been used to study the geometric Langlands programme with

ramification [43]. The bubbling geometry picture of the surface operators in N = 4 SYM

has been proposed in [44]. It would be interesting to illuminate the relations between

the surface operators in four-dimensional SYM and the Wilson surface operators in six-

dimensional (2,0)-theory.
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7. Various connections

In this appendix, we list various connections appeared in our calculation. For the induced

metric (3.9), its Christoffel symbol has nonvanishing components:

Γt
rt = Γx

xr = −f
′

f

Γr
tt = −Γr

xx = − f
′

(1 + f ′2)f
,

Γr
rr = −f

′

f
+ f ′ f ′′

1 + f
′2

Γr
αα =

1

1 + f ′2

(

− r +
f

′

f
r2

)

Γr
ββ =

1

1 + f ′2

(

− r +
f

′

f
r2

)

sin2 α

Γr
γγ =

1

1 + f ′2

(

− r +
f

′

f
r2

)

sin2 α sin2 β

Γα
rα = Γβ

rβ = Γγ
rγ =

(

1

r
− f

′

f

)

Γα
ββ = − sin α cos α,

Γα
γγ = − sin2 β sin α cos α

Γβ
αβ = Γγ

αγ =
cos α

sin α
,

Γβ
γγ = − sin β cos β

Γγ
βγ =

cos β

sin β
(7.1)
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When f = κr, some of the components above are vanishing.

For the AdS7 spacetime, its nonvanishing independent components of spin connection

are

ω
1
00 = − 1

R
, ω

1
ii =

1

R
, for i 6= 0, 1

ω
3
ii = − y

Rr
, for i = 4, 5, 6

ω
4
ii = − y cos α

Rr sinα
, for i = 5, 6

ω
5
66 = − y cos β

Rr sinα sin β
(7.2)

For the metric (3.46), its Levi-Civita connection has components:

Γα
ηα = Γβ

ηβ = − 1

sin η cos η
, Γα

ββ = − sin α cos α, Γβ
αβ =

cos α

sin α

Γη
ηη = −cos η(1 + 2κ2 sin2 η)

sin η(1 + κ2 sin2 η)
, Γη

αα =
(1 + κ2 sin2 η) cos η

(1 + κ2) sin η
,

Γη
ββ =

(1 + κ2 sin2 η) cos η sin2 α

(1 + κ2) sin η
. (7.3)

The independent nonvanishing components of the spin connections with respect to the

vielbeins (3.50) are

ω
1
22 = ω

1
33 =

1

R cos η
, ω

2
33 = − sin η cos α

R cos η sin α
,

ω
1
44 = ω

1
55 = ω

1
66 = ω

1
77 =

cos η

R
,

ω
4
55 = ω

4
66 = ω

4
77 = −cosh ρ sin η

R sinh ρ
,

ω
5
66 = ω

5
77 = − cos θ sin η

R sin θ sinh ρ
, ω

6
77 = − cos γ sin η

R sinh ρ sin θ sin γ
(7.4)

For the metric (4.2), its Levi-Civita connection has components:

Γ2
33 = − sin ζ2 cos ζ2, Γ2

44 = − sin ζ2 cos ζ2 sin2 ζ3,

Γ3
44 = − sin ζ3 cos ζ3, Γ3

23 = Γ4
24 =

cos ζ2

sin ζ2
, Γ4

34 =
cos ζ3

sin ζ3
. (7.5)

where the index i indicates ζi. And the nonvanishing components of the spin connection

of S4 with respect to vielbeins (4.7) are

ω
1
22 = ω

1
33 = ω

1
44 = − 2 cos ζ1

R sin ζ1
, (7.6)

ω
2
33 = ω

2
44 = − 2 cos ζ2

R sin ζ1 sin ζ2
, ω

3
44 = − 2 cos ζ3

R sin ζ1 sin ζ2 sin ζ3
(7.7)

For the metric (4.17), its nonvanishing Levi-Civita connection components are of the

form

Γδ
δδ = −Γδ

αα =
sin δ

cos δ
, Γδ

ββ = − sin δ

cos δ
sin2 α

Γα
δα = Γβ

δβ =
1

sin δ cos δ
, Γα

ββ = − sin α cos α, Γβ
αβ =

cos α

sin α
(7.8)
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The spin connection with respect to the vielbein (4.22) has the components:

ω
1
ii =

1

R
, (for i = 2, 3, 4), ω

2
33 = − y

Rr1
,

ω
2
44 = − y

Rr1
, ω

3
44 = − y cos α

Rr1 sin α
. (7.9)
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